o Z

£

z

Project Number: 770299

NewskEye:

A Digital Investigator for Historical Newspapers

Research and Innovation Action
Call H2020-SC-CULT-COOP-2016-2017

D5.8: Personal Research Assistant: Explainer (b) (final)

Due date of deliverable: M45 (31 January 2022)

Actual submission date: 10 December 2021

Start date of project: 1 May 2018 Duration: 45 months

Partner organization name in charge of deliverable: UH-CS

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

PU
PP
RE
CcO

Public PU
Restricted to other programme participants (including the Commission Services) -

Restricted to a group specified by the Consortium (including the Commission Services) -

Confidential, only for members of the Consortium (including the Commission Services) -

)

NEWS

(

D5.8: Personal Research Assistant: Explainer (final)

CULT-COOP-09-2017

Revision History

Document administrative information

Project acronym: NewsEye
Project number: 770299
Deliverable number: D5.8

Deliverable full title:

Personal Research Assistant: Explainer (b) (final)

Deliverable short title:

Personal Research Assistant: Explainer (final)

Document identifier:

NewsEye-T53-D58-Explainer-b-Submitted-v3.1

Lead partner short name: | UH-CS
Report version: V3.1
Report preparation date: | 10.12.2021
Dissemination level: PU
Nature: Report

Lead author:

Leo Leppanen (UH-CS)

Co-authors:

Hannu Toivonen (UH-CS)

Internal reviewers:

Axel Jean-Caurant (ULR), Johannes Michael (UROS)

Status:

Draft

Final

X | Submitted

The NewsEye Consortium partner responsible for this deliverable has addressed all comments re-
ceived, making changes as necessary. Changes to this document are detailed in the change log table

below.

Change Log
Date Version | Editor Summary of changes made
28/03/2021 0.1 L. Leppanen (UH-CS) First draft
05/04/2021 1.0 L. Leppénen (UH-CS) Ready for internal review
06/04/2021 1.1 H. Toivonen (UH-CS) WP leader’s check
09/04/2021 1.2 J. Michael (UROS) Internal review
14/04/2021 1.3 A. Jean-Caurant (ULR) Internal review
16/04/2021 1.4 L. Leppéanen (UH-CS) Addressed review comments
16/04/2021 2.0 L. Leppénen (UH-CS) Ready for quality management
28/04/2021 2.1 L. Leppanen (UH-CS) Modifications based on quality management
29/04/2021 2.2 L. Leppanen (UH-CS) Ready for submission
30/04/2021 3.0 A. Doucet (ULR) Minor changes and finalisation
10/12/2021 3.1 A. Doucet (ULR) Submission

2 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

Executive summary

This document describes the Explainer component of the NewsEye Personal Research Assistant. The
Explainer provides a method for describing the historical newspaper analyses conducted by the Inves-
tigator component of the Personal Research Assistant in natural language, such as English, French,
German or Finnish. By doing so, it facilitates a better understanding of how the results were obtained,
how reliable they are and how the user might replicate the process. The Explainer is a natural language
generation application. lts inputs are both a description of the computational steps conducted by the
Investigator, as well as descriptors defining what heuristic led to the computation steps being taken.
This input is fed into a pipeline of components that transforms the input into natural language. The indi-
vidual parts of this pipeline are designed so as to be easily augmented and extended without needing
to modify the surrounding parts of the pipeline. Likewise, the pipeline architecture is designed to allow
relatively easy translation of the process to other languages by virtue of separating the domain-specific
components from the language-specific components where possible. On both the abstract and imple-
mentation levels, the Explainer is strongly related to the Reporter component (see public Deliverable
D5.7) and shares a large portion of its code base with it.

3 of 31

N
E

0

EWS

= D5.8: Personal Research Assistant: Explainer (final)

CULT-COOP-09-2017

Contents

Executive Summary

1.

2.

Introduction

The NewsEye Personal Research Assistant
2.1. An Overview of the Personal Research Assistant
2.2. The interaction between the Investigator and the Explainer

Natural Language Generation
3.1. Natural Language Generation as a Process
3.2. Methods for Data-to-Text Natural Language Generation

Requirement Analysis

The Explainer Architecture
5.1.
5.1.1. The Fact data structure
5.1.2. The Message data structure

5.1.3. Fact and Message Generation
Document Structuring
Templates and Template Selection
Lexicalization
Aggregation and Referring Expression Generation
Morphological Realization
Realization into HTML

5.2.
5.3.
5.4.
5.5.
5.6.
5.7.

Integration with Assistant Control
Integration for Tasks and Reasons
Evaluation

Conclusions

. Explainer APl Description

Input: Events, Factsand Messages

24

25

26

27

30

4 of 31

)

NEWS
E

(

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

1. Introduction

Historical newspapers collect information about cultural, political and social events in a more detailed
way than any other public record. At the same time, analysing the wealth of information in the newspaper
archives has traditionally been difficult and time-consuming. The NewsEye project develops methods
and tools for effective exploration and exploitation of historical newspaper archives.

The core concept of NewsEye is a set of tools and methods, from text recognition to automated explo-
ration of texts, that improve the users’ capability to access, analyze and use the content of historical
newspapers, stored in digital libraries (Figure 1).

This document describes some functions of the Personal Research Assistant developed as part of the
NewsEye project. The Assistant carries out automated, iterative analysis of corpus content and reports
on the results, functioning as the user’s intelligent and transparent aid.

In this deliverable, we will first describe the Personal Research Assistant and the Explainer’s role in it.
We will then present a brief overview of the state of the art in the field of natural language generation
in Section 3, highlighting how the methods employed can be divided into few archetypical approaches.
Section 4 then presents an analysis of the interplay of the system requirements and the state of the art,
identifying a suitable overall architecture for the system. The bulk of the deliverable, Section 5 presents
the implementation of the Explainer. Sections 6 and 7 describe how the Explainer integrates with the
rest of the personal research assistant as a service and on a more granular level. Finally, Sections 8
and 9, respectively, presents an evaluation of the Explainer and some concluding thoughts.

This document is a complete description of the Explainer, meaning that it also contains information
about the aspects of the system that are shared in totality with the Reporter (see Deliverable D5.7)
and with the previous iteration of the Explainer described in the non-public deliverable D5.5. Where
relevant, segments of text have been shared across the deliverables. Readers who are already familiar
with the Deliverable D5.7 describing the NewsEye Reporter will find the contents of Sections 1 through
3 familiar, and will identify that the requirement analysis conducted in Section 4 reaches conclusions
highly similar to those presented in Deliverable D5.7 describing the Reporter component. In terms of
concrete changes to the system since the non-public Deliverable D5.5, the Explainer has been extended
to support all the analytical tools and decision making heuristics used by the Investigator. The Explainer
has also been extended in terms of the selection of languages it can produce, and can at this point
produce text in English, Finnish, German and French.

2. The NewsEye Personal Research Assistant

This deliverable describes the Explainer, a part of the larger system known as the NewsEye Personal
Research Assistant (‘Assistant’). In addition to the Explainer, the Assistant consists of an Investigator
component, a Reporter component and an additional Controller component. We next give an overview
of these components, followed by a more in-depth description of the communication between the Inves-
tigator and Explainer components.

5 of 31

™ wm

D5.8: Personal Research Assistant: Explainer (final)

CULT-COOP-09-2017

Personal Research Assistant (WP5)
Automated and personalized analysis
Natural language report generation
Explanation of estimated relevance and
evidence

i

Dynamic Text Analysis (WP4)
Viewpoint and comparative analysis
Contextualized topic modeling
Query-specific analysis and linking
Trend analysis

Automatically
Annotated Content

Semantic Text Enrichment (WP3)
Named entity recognition and linking
Stance Detection
Novelty and event detection

P

Text Recognition & Article Separation
(WP2

Article Separation
Automatic Text Recognition
Layout Analysis

Digitized Newspapers

Figure 1: An overview of the NewsEye concept. This document describes some functions of the Per-

sonal Research Assistant (Work Package 5).

6 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

2.1. An Overview of the Personal Research Assistant

As noted above, the personal research assistant consists of three primary components (Investigator,
Reporter and Explainer) and a Controller component. The Controller component has two primary func-
tions. First, it provides an Application Programming Interface (API) for users and user interfaces (Uls),
especially the NewsEye Demonstrator (see Deliverable D7.8). This allows outside users to view the
Assistant as a single, unified, system so that they do not need to concern themselves with the internal
division of labor within the Assistant. The APl is used via HTTP(S) queries and is described in more
detail in Deliverable D5.6, which describes the present version of the Investigator. Second, as the name
implies, the Controller provides a central control mechanism that passes messages and results between
the three major subsystems of the Assistant, i.e. the Investigator, the Reporter and the Explainer.

This design facilitates the distribution of the Assistant components over multiple virtual or physical ma-
chines if such a distribution would become needed due to increasing amounts of users. Modifying the
Assistant so that a single Controller instances acts as a load balancer and distributor of work to multiple
instances of the subcomponents, while not trivial, would be possible following the industry standard
approaches used in many other online services.

The Investigator component, in broad terms, autonomously performs a series of queries over a news-
paper corpus using different tools provided by Work Packages 3 and 4 to identify potentially interesting
factors from the data. The present version of the Investigator is detailed in Deliverable D5.6. The an-
alytical results obtained by the Investigator are passed via the Controller to the Reporter component
described in Deliverable D5.7.

Having received the analytical results from the Assistant Controller, the Reporter then transforms the
results into a natural language document describing the most salient factors of the results. The resulting
natural language document is then returned to the Controller. The Controller then sends the document
to the party that requested it. In the most likely scenario, this is the NewsEye Demonstrator that displays
it to the end user.

In addition to this, the Assistant contains a database component which stores analysis results obtained
from the Investigator, the reports obtained from the Reporter, explanations obtained from the Explainer
and other necessary data. Section 2.2 describes the way the Investigator and the Explainer are con-
nected in order to produce and store the explanations produced by the Explainer.

Finally, the Assistant also contains the Explainer component, described in the present deliverable.
Whereas the Reporter describes what the Investigator found in the corpus, the Explainer described
how those findings were obtained and why the Investigator conducted the analyses that resulted in
them being obtained. In other words, whereas the Reporter describes the end result of a process, the
Explainer describes the process itself.

An overview of the Personal Research Assistant’s architecture is presented in Figure 2.

2.2. The interaction between the Investigator and the Explainer

The interaction between the Explainer and the Investigator is driven by the Controller. After an analysis
task is complete, or when an explanation is specifically requested, the Controller will send a request to
the Explainer component for producing a natural language explanation of the computation process con-

7 of 31

t z
W\ T
0
M wn

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

Vs N
BN . Personal Research Assistant (WP5)
(WP3+WP4) Querie Investigator Results Tasks
(D5.6) Results
. Reports
Ul (WP7) Queries | A Control
P (D5.6)
I
Querieis+Data
......... > Control E ReportS R(er5or7t)er
» Data Explainer
- ---% Control+Data (D5.8)
. J

Figure 2: Flow of requests and data between the components of the Personal Research Assistant and
the associated components developed in Work Packages 3, 4 and 7.

ducted by the Investigator in obtaining some specific result. The Explainer then produces such a natural
language explanation and returns it to the Controller, which adds it to the Assistant’s database, from
where it can be retrieved and returned to the user. This flow of information and requests is described in
Figure 2.

Notably, the Explainer does not report on the results that were found, but merely on the process of
finding them. Similarly, it does not — at least in the present — attempt to present any type of a simplified
view of the Investigator's actions: the goal is to allow the user to replicate the steps taken by the
Investigator, and thus the explanation should not skip any steps. Furthermore, the Explainer does not
conduct any post-hoc explanation about why the steps were taken: this reasoning comes from the
Investigator itself and the Explainer merely describes it in natural language.

3. Natural Language Generation

The general task conducted by the Explainer is known as natural language generation, or NLG for short.
More specifically, the Explainer is performing ‘data-to-text NLG’, where ‘data’ refers to structured data.
That is, the Explainer is not designed to ingest unstructured data, such as raw text. In this section we
first give an overview of (data-to-text) NLG in general as well as how it can be viewed as a series of
subtasks, followed by a description of how the subtasks common to data-to-text NLG can be completed.

3.1. Natural Language Generation as a Process

A large number of data-to-text systems have been reported in the literature, in different domains, with
varying types of input data [1]. For example, BabyTalk [2] is an NLG system that generates medical

8 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

reports from sensors monitoring babies in Neonatal Intensive Care Units. Hallett and Scott [3] describe
a system for generating reports from events in medical records. Several systems have been developed
that generate weather forecasts from the output of weather computer simulation models [4, 5, 6]. Other
generate summaries from employment statistics [7, 8]. In addition to these efforts, several commercial
NLG systems exist in a number of domains. Among the larger commercial players that provide NLG
products and/or services are Automated Insights, Arria, AX Semantics, Narrativa, Narrative Science,
and Yseop [9]. As demonstrated by the amount of commercial entities working in the domain, NLG
technology is of increasing interest even without the academia, for example in the newsroom, even if it
is not always clear to the non-technical stakeholders how to best employ the technology [10].

General data-to-text NLG systems normally involve three processes: deciding what to say (content
determination), how to organize it (document and sentence planning), and how to express it (surface
realization) [11].

In general, the content determination process of a data-to-text system would entail subprocesses such
as computing and deriving new information from system input. For example, an input consisting of
a table of some daily measurements might be augmented with monthly averages, changes over time
spans, etc. In the specific case of the Explainer, however, this stage is not meaningfully present, as all
the input data is provided by the Investigator and no data augmentation is conducted.

Document planning is a stage that produces ‘messages’ — pieces of information that are meaningful in
isolation and could be conveyed to the reader via the final text — and organizes them into a structure
that defines in which order they should appear in the final document. This initial version of the docu-
ment plan is based solely on the information of the messages and can be modified in the process for
better linguistic fluency. For example, if the document planning phase decides to place two pieces of
information sequentially in the document plan, a further stage of the generation process might place a
third piece of information between them if it makes the resulting text more fluent.

The following stage, microplanning, organizes the lower-level structures of the document. This includes,
for example, deciding what linguistic expressions are to be used to express each message, how domain
entities are referred to, whether multiple messages can be expressed in a single sentence, etc.

Finally, the realization stage takes as input the document plan and produces the final text output. This
includes inflecting the words selected in the microplanning stage to the correct, grammatical forms and
ensuring the text is orthographically correct, and adding any markup needed to display the text in the
target medium.

Finally, we emphasize that the above characterization is more of an aide for reasoning about the types
of decisions NLG systems have to complete. Previous NLG systems have employed a wide variety
of techniques that can make the distinctions between the aforementioned phases of the generation
process fuzzy or even remove them altogether [12].

3.2. Methods for Data-to-Text Natural Language Generation

In addition to different ways of dividing the larger generation tasks to smaller subtasks, there are also
several competing methods for completing said subtasks [12]. In broad terms, we identify two main
approaches: rule-based approaches and trainable approaches.

9 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

Rule-based systems are based on handcrafted rules, corpus analysis and expert consultations [13].
They are usually more robust than trainable approaches and are widely used in industry and for com-
mercial purposes. As the rule-based approach is finely controlled, the output can be guaranteed to be
more understandable by humans. Rules also provide relative high guarantees of correctness, and in
case of errors, can be easily corrected by modifying the system’s source code. At the same time, rules
are limited, especially when the domain complexity increases and the generation of the rules can be an
expensive effort requiring significant input from domain experts.

Trainable approaches, such as neural networks, reinforcement learning, or Hidden Markov Models are
more flexible, easier to develop, and more domain-independent. However, one of the challenges of
these trainable approaches is the lack of sufficient quantity of aligned datasets that can be used to
derive rules or train the NLG system [13]. Even when the data is available, the expected output text is
often not aligned with the input data, and thus cannot be used directly for the development of an NLG
system [14].

At the onset of the NewsEye research process, we identified that the state of the art in these train-
able approaches also seemed to suffer from a series of further problems that were relevant for the
NewsEye context. First, purely trainable approaches struggled to reach the linguistic depth of their
competitors [15], with even the then-most-recent trainable end-to-end architectures failing to conclu-
sively outperform rule-based approaches even in a relatively simple and constrained generation task
when evaluated by humans [16]. Second, most trainable approaches suffered from a lack of trans-
parent generation process. This chiefly manifested in the difficulty of detecting and correcting system
errors: it was exceedingly difficult to guarantee any specific level of correctness for an NLG system
based on neural networks, and in case of problems in the system it was not possible to conduct surgical
modifications. Rather, especially in case of (deep) neural networks, the only solution was to further train
the system with more training data. Whether this retraining and fine-tuning results in some unknown
pathological behaviour in some corner cases would be difficult if not impossible to determine. Third,
empirical evidence indicated that such systems were — and continue to be — prone to overfitting to the
training data, which manifests as ‘hallucinatiorn’, where the system produces output that is not grounded
in the underlying data [17]. These problems were made more complicated by the fact that automated
evaluation of an NLG system’s quality was — and continues to be — an unsolved problem, with evidence
suggesting that the most popular automated metrics fail to properly correlate with the judgments of
human evaluators [12, 16, 18, 19].

Our interpretation of the current state of the art in NLG at the onset of the NewsEye research project
was thus that trainable approaches were mainly ready for real-world use in situations where either
the produced texts were very short (i.e. scenarios similar to the E2E Challenge described by Dusek,
Novikova, and Rieser [16]) or in scenarios where even major mistakes in individual pieces of output are
not problematic. While many of the problems identified above have seen significant scholarly attention,
with attention being directed especially towards the hallucination problem [20, 21], the present state of
the art in NLG has not significantly modified the above analysis. For example, hallucination continues
to plague even state-of-the-art neural systems [22, 23]. As such, we do not believe the present state
of the art in NLG is sufficiently different from that at the onset of the NewsEye project, and thus our
requirement analysis (see below) conducted at the onset of the project remains valid.

10 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

4. Requirement Analysis

The NewsEye Personal Research Assistant is intended to be used for exploration of historical news-
paper corpora. Part of the intended user base is formed by academics such as historians and social
scientists. The role of the Explainer in the Personal Research Assistant is especially crucial. The
Explainer is intended to enable the users to understand the analytical processes conducted by the In-
vestigator and reported by the Reporter, enabling them to verify that the results are meaningful and
correct. Furthermore, it is also intended to enable these users to replicate the processes by themselves
to ensure the results’ correctness and to derive further results. As such, it is absolutely crucial that the
Explainer’s output is correct. Consequently, this requirement speaks for a rule-based approach.

As a consequence of the role of the Explainer in the larger Assistant, it does not necessitate high
linguistic variation. The Explainer is a tool for understanding how other texts were produced, and is
therefore used to obtain short and correct information: the users are not expecting high prose but
concrete details in a simple and understandable format. This requirement speaks towards a rule-based
approach, as the main benefit of data-driven methods is not needed.

The NewsEye Personal Research Assistant is also intended to be easily extensible so that it can take
advantage of new, improved, analytical tools as they become available. Adding such a new tool should
be straightforward and should not invalidate previous work. As the Explainer needs to adapt to each
such additional tool, this requirement speaks towards a modular system, where each analytical tool is
accompanied by a small module that can be incorporated into the Explainer, handling the specifics of
said tool.

The Explainer should, also, be able to produce the explanations in multiple languages. While this
requirement does not specifically require any specific approach, taken together with the extensibil-
ity requirement it speaks for a modular approach. A modular system can be constructed so that the
language-independent parts of the generation process can be shared by the different languages. This
further improves the extensibility of the system by allowing the system to be extended to new languages
without having to duplicate all of its components.

As a summary, we identify the following requirements and their implications for the system:

» Correctness - Suggests a rule-based approach
+ Low variation - Suggests a rule-based approach
Extensibility - Suggests a modular approach
Multilinguality - Suggests a modular approach

As a whole, the requirement analysis suggests that the Explainer should be a modular system based
on human-produced rules. This analysis is further supported by the lack of any suitable training data
set that would be required for a trainable approach to be feasible.

At the same time, the requirement analysis does not completely forbid the use of trainable methods as
parts of the larger system in settings where they are unable to significantly affect the correctness of the
output. Early results in other domains indicate that dividing the unified, end-to-end, neural NLG model
into separate, but still neural, subcomponents increases the performance of the system [24]. While the
limitations of such models are far from known, even these early successes indicate that a hybrid system

11 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

employing both rule-based and neural modules could be successful. The architecture of the Explainer
facilitates the inclusion of neural components if they are developed.

5. The Explainer Architecture

Based on the above requirement analysis, we decided to base the Explainer on the same architecture
as the Reporter (see Deliverable D5.7), which in turn is based on the multilingual news report generator
previously produced by the University of Helsinki Department of Computer Science [25]. The modified
architecture (see Figure 3) is formulated as a pipeline where raw data and relevant parameters are fed
in at the start. This input is then processed through a pipeline of individual components, where the
components of the pipeline each modify the input towards the final output. At the end of the pipeline, a
finished natural language text document is produced as the output. The current version of the Explainer
produces text in English.

In the next sections, we will step through the generation process, discussing each pipeline component
in turn.

5.1. Input: Events, Facts and Messages

Each run of the Explainer produces a textual description of how some specific analytical result was
arrived at by the Investigator. Viewing the investigation process as a computational graph such as that
shown in Figure 4, each run of the Explainer produces an explanation detailing how and why a specific
result (the non-circular nodes marked with ‘R’ in Figure 4) was arrived at from the initial user input (the
root of Figure 4).

For example, to explain the bolded result marked R’ in Figure 4, the Explainer needs to express, at
minimum, the bolded edges that define the process of how the result was derived from the initial user
input. This bolded path of edges is the critical computational path of the specified result. It is defined
in terms of a sequence of discrete Events, which correspond to the edges of the graph. The Events
describe both what analytical task was compeleted by the Investigator, and the Investigator’s reason for
undertaking said task.

This sequence of Events is the primary input of the Explainer, and is provided to the Explainer in the
JavaScript Object Notation (JSON) format via a HTTP(S) request. The JSON format is an industry
standard format for moving data between services using HTTP(S). Figure 5 shows an excerpt of what
the system input looks like.

As with the Reporter (see Deliverable 5.7), the Explainer refers to information internally in two primary
formats: as facts (see Section 5.1.1) and as messages (see Section 5.1.2). A fact represents a distinct
point of information. Each Event produces two facts, one describing what task was completed by
the Investigator and the other the reason for undertaking that task. Facts are the minimal pieces of
information that are expressible to a human reader and the smallest informational units used by the
system. Each fact is wrapped into a ‘message’, which provides a place for any mutable data that needs
to be associated with a specific fact for the generation process to succeed.

12 of 31

| Z
A&
®z
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

[PRA Control }

A~

b

Reporter API Message W,
and Control Generation J\

Task or Reason Parser

~

AN
~N
' Y
Document Planner
- J
>Task and Reason
J Resources
' R
Template Selector K > TemplateDB
- J
~

Lexicalization ¢ .
[D J‘ Lexical Resolvers

=

| Aggregator |
[Named Entity \, R (fi:,LL‘

Resolution A | ! ' tNamed Entity Resolvers
= ~ | |

~
h

[Morphological)
Realization *Morphological realizers
= J

h

L Surface Realizer }

—[Post Processing }

Figure 3: High-level architecture of the Explainer. Sharp-cornered elements represent various re-
sources available to the Explainer. Sand-colored elements (e.g. Morphological realizers)
are language-specific but not directly related to any specific analytical tool. Sapphire-colored
elements (e.g. Task Parsers) are specific to an analytical tool or a heuristic used by the In-
vestigator, but not to any language. Dashed elements (e.g. TemplateDB) are specific to both.
The green middle column forms the main NLG pipeline. Dashed borders indicate locations of
components that are not meaningfully present in the current iteration of the Explainer, but that
could be introduced easily using similar components used e.g. in the Reporter.

13 of 31

| Z
®z
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

ﬁ User Input

Dataset A

Dataset

Figure 4: The Investigation process as a computational tree. Each circular node represents a specific
dataset of newspaper articles, with the adjacent nodes of various shapes (denoted by ‘R’ for
‘result’, with the different shapes indicating the results are not of uniform type) representing
a result of conducting an analysis on said dataset. The edges between the corpora indicate
processes that derive one dataset from another and the edges between a corpus and a result
designate the analytical process that leads to the result. The process starts from the top-most
dataset, which is the initial input provided by the user. The bolded edges designate actions
(‘tasks’) of the Investigator that lead to the procurement of the result R’ from the initial dataset.
For additional details on the process, see Deliverable D5.6, which uses a notation slightly
different from that used above.

14 of 31

—_

© 0o N o g »~ W N

m z
02
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

-~

"id": 6019,
"reason": {
"name": "initialization"
},
"task": {
"name": "ExtractFacets",
"uuid": "227542cd-d57f-4af4-87a9-121beccef383"

"id": 6019,
"reason": {
"name": "initialization"
},
"task": {
"parameters": {
"unit": "tokens",
"max_number": 30
},
"name": "ExtractWords",
"uuid": "47402224-cac4-4482-8642-cf87e9f0f0c9"

"id": 6019,
"reason": {
"name": "initialization"
1,
"task": {
"parameters": {
"unit": "tokens",
"max_number": 30
1,
"name": "ExtractBigrams",
"uuid": "def01b23-9039-4111-acb8-26566bbb0c20"

Figure 5: An example of the input to the Explainer as provided by the Investigator. Note that the data
structure has been edited for length and some details are omitted.

15 of 31

N EWS
—

E S E D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017
Field Example value
type task
name ExtractBigrams
parameters [ExtractBigrams:UNIT:tokens]
id 1

Table 1: The fields of the ‘fact’ data structure and an example of their possible values. This example fact
would correspond to the idea that the distribution of the bigrams — of tokens rather than e.g.
stems, as per the parameters field — were queried by the Investigator. The reasoning for this
task would then be provided in a second message with a type reason and the same id value.

5.1.1. The Fact data structure

The fields of the Fact data structure are detailed in Table 1, together with example values. Whereas the
Reporter required a fairly complex Fact data structure, the Explainer’s Fact only contains three primary
fields, type, name and parameters, as well as an id field.

The simplest of the fields is the type field, which encodes whether the fact represents a task or the
reason for said task being completed.

In case of a task type message, the name field encodes which task was completed. For example, in
the example in Table 1, the analysis being conducted is the ExtractBigrams task. In case of a reason
type message, the name could be, for example, Initialization to indicate that the related task was
completed as one of the tasks that is always taken when the system starts analyzing a corpus.

The field parameters encodes any per-task or per-reason parameters that need to be expressed for the
explanation to make sense. For example in Table 1, the field encodes the information that the bigrams
were extracted from a tokenized text, rather than a stemmed text.

Finally, the id field allows the Explainer to link the task and the reason of a single event, as both share
the same id value. The ID value also encodes the temporal ordering of the events, as IDs are allocated
in order.

During the processing performed by the Explainer, the fact itself is an immutable piece of information.
In other words, the Explainer never modifies the fact itself once it has been created. This ensures that
the underlying analysis results remain unchanged through the generation process.

5.1.2. The Message data structure

As noted above, the fact data structures are considered immutable and the generation is not to modify
them in any way. In fact, they are technically implemented in a way that makes it impossible for them
to be modified by accident. This ensures the underlying information within the generation always stays
true. At the same time, the system needs to attach information to the facts, such as what template (see
Section 5.3) is to be used to express the fact. For this reason, we encapsulate the immutable facts in
mutable data structures called ‘messages’. In the present version of the Explainer, the message data
structures contain the fields shown in Table 2.

16 of 31

N EWS
—
E S E D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017
Field Description
facts The facts related by this message. By default con-

tains only a single fact, could contain multiple e.g.
as a result of aggregation.

template The template associated with the message. Initially
empty, gets assigned during template selection.

Table 2: The fields of the ‘message’ data structure and a description of their contents.

Beyond the mutability, another notable distinguishing feature between fact and messages is that a single
message is allowed to contain multiple facts. This could happen as a result of, e.g., the aggregation
phase where multiple templates are combined into a single template which then expresses multiple
facts. As the present version of the Explainer does not conduct aggregation (we found it unnecessary
given the task and the language used), this property is currently unused but retained for ease of code-
reuse between the Explainer and the Reporter.

5.1.3. Fact and Message Generation

The facts and messages are generated from the input provided by the Investigator in the message
generator. It ingests the JSON input and outputs the messages and facts, which are in turn ingested by
the document planner.

Notably, the specifics of how an analysis result is to be parsed is dependent on the precise analytical
tool being described. For example, the metadata contained in the parameters fields of the input are
analysis-specific. This means, in practice, that the parsing functionality of the message generator needs
to be adjusted every time the analytical tools used by the Investigator are altered and when a new
analytical tool is integrated into the Investigator. Similarly, the process needs to be modified whenever a
new heuristic is implemented in the Investigator. As such, the message generator is constructed so that
it delegates the parsing to a set of individual parsers, each of which contains a method for identifying
the relevant subset of tasks or reasons it can parse. These individual parsers are depicted in Figure 3
as the small box with the label ‘Task or Reason Parser’.

Task parsers are defined on the level of the analyses conducted by the Investigator. For example, the
Investigator might implement an analysis called ‘GenerateTimeSeries* which has its own unique set of
parameters and as such needs its own, individual, logic. This logic is encoded in a single Task Parser
specific to this analysis. The task parsers return messages, wherein the type of the message is ‘task’.
Similarly, Reason parsers are defined for each heuristic the Investigator has, and parse the details of
the reason fields of the underlying input. They produce messages wherein the type of the message is

reason.

Processing the list of task-reason pairs provided as input in sequence (see Figure 5), the message
generator identifies for each task-reason pair both a Task Parser and a Reason Parser. Using these,
two messages are then generated from the pair, with distinct types. The two generated messages make
up a tuple, all of which are collected and form the output of the procedure. This procedure is described
below in pseudocode as function GENERATEMESSAGES in Algorithm 1.

17 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

Algorithm 1 Pseudocode describing the relation between the tasks conducted by the Investigator (see
Figure 5) and the task parsers.
function GENERATEMESSAGES(Event, TaskParsers, ReasonParsers)
Messages + |]
for all Fvent € Fvents do
for all TaskParser € TaskParsers do
if TaskParser is applicable to Event then
TaskMessage < APPLY(Event, TaskParser)
break
end if
end for
for all ReasonParser € ReasonParsers do
if ReasonParser is applicable to Fvent then
ReasonMessage < APPLY(Event, ReasonParser)
break
end if
end for
Messages.append((TaskMessage, ReasonMessage))
end for
return Messages
end function

This formulation of the message generator allows for significant decoupling of the Explainer's core
functionality from the specifics of individual tools and heuristics, thus enabling easier modifiability and
simpler integration of any future tools.

This list of tuples produced by the message parsing is provided as input to the next step in the pipeline.

5.2. Document Structuring

The tuples of message data structures, which contain the fact data structures, are provided as input
to the next component in the pipeline, the document planner. Whereas in the Reporter the document
structuring is a highly complex task, in the Explainer it is very simple.

The Explainer’s output needs to reflect the temporal ordering of the tasks taken by the Investigator: it is
not meaningful to describe a task T;, before any of its preceding tasks T,,_, for any & > 0. Similarly, both
a task and its reason need to be discussed together. As such, the document planner of the Explainer
simply produces a document plan containing the task-reason pairs in the temporal order they were
conducted in, as defined by the id fields. It produces a tree-structure where said messages are the
leaves.

The majority of the complexity in the Reporter’s version of this stage was caused by a need to group the
messages into logical paragraphs consisting of multiple related messages. In the case of the Explainer,
we observe that each task-reason pair on its own makes up sufficient content for a paragraph, and thus
each paragraph consist of only a single such pair.

18 of 31

t z
W\ T
0
M wn

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

(DocumentPlanNode

/\

DocumentPIanNode DocumentPIanNode DocumentPIan Node

N N N

[Messagetas" Messagereas"”] [Messagetas" Messagereaso"] [Message“"‘sk Messagefeason]

@ [Factrleason] [FaCttQaSk] [Facteason] @ @

Figure 6: An abridged version of a Document Plan as produced by the Document Planner.

en: All pairs of subsequent {parameters} were extracted and counted.
fi: Kaikki {parameters} noudettiin ja laskettiin.

| name = ExtractBigram

Figure 7: An example of the templating language.

This process thus results in a document plan like that shown in Figure 6, which acts as the input for the
next stage of processing.

5.3. Templates and Template Selection

As the next step in the NLG process, the language-independent messages need to be transformed to
some type of linguistic constructs. In the case of the Explainer, these language constructs correspond
to individual relatively long expressions, potentially multiple sentences long each, and are provided to
the system as templates.

Broadly speaking, the amount of templates needed by the system for each language scales as O(V |H |+
V|A]), where |H| is the number of heuristics supported by the system, |A4| is the number of analytical
tools supported by the system and V is a linguistic variation coefficient denoting in how many distinct
ways the system should be able to express each heuristic and analysis. As linguistic variation is not a
very important factor for the Explainer, V is expected to be very low, and initially strictly 1.

The templates are provided to the system in a custom templating language, of which Figure 7 provides
an excerpt. As can be observed, a template group in our system consists of three parts:

1. A per-template language identifier such as ‘en’ for English,

2. A phrase (template) expressed in natural language with slots (indicated by curly brackets {}) that
can be filled with information from the Fact data structures, and

3. conditions for using the templates in the group, usually that it applies to a specific task.

Moreover, slots in the templates can be optionally associated with grammatical cases and other addi-
tional information to instruct components further ‘down’ the pipeline on how to treat them.

19 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

The templating language was designed to allow for multilinguality in the system. Multilinguality is sup-
ported by allowing expressions in different languages to be specified within the same template group,
i.e. by adding fi’, ‘en’ or ‘de’ at the beginning of the template as shown in Figure 7. In many cases,
adding new languages to the template group does not require creation or modification of the conditions
of the group. It only requires the translation of the template text, as demonstrated by Figure 7.

The aim of the templating language is to make it relatively simple for domain experts to contribute to
the creation of templates without significant background in linguistics or natural language processing,
as would be required if the templates were expressed as, for example, parse trees.

We note here that the templates are, fundamentally, related to the tasks and heuristics in the same way
as the parsers are. As a consequence, the templates are provided together with the relevant parser in
a joint resource unit, called either a Task Resource or a Reason Resource depending on whether the
parser is a Task Parser or a Reason Parser. Also included in these resources are the lexical parsers,
discussed in Section 5.4.

To select a suitable template for a given message in the document plan, the system first finds, for each
fact, a template that can be used to express said fact. In the case that multiple valid templates exist for
a certain fact, one is selected pseudo-randomly. While no such cases exist in the present version of the
Explainer, this ability to define multiple valid templates allows for some linguistic variety in the output if
desired. The randomness used in template-selection is pseudo-random in the sense that the random
number generator is re-initialized with a known constant starting position (a ‘seed number’) for every
generation task. This means that every time the system is called with the same set of inputs it produces
the same ‘random’ choices. This is useful in that it produces variety into the text for the human reader
of the resulting report, but still makes the process deterministic for most relevant purposes insofar as
development is concerned. This also means that if the same generation task is run multiple times, the
same report is produced down to the minor linguistic choices.

Having identified a suitable pseudo-random template, a copy of the identified template is then attached
to the tree as a child of each fact’s parent message so that each slot of the template contains a link to
the underlying fact. Individual slots rather than the whole template are associated with the facts, since
the following aggregation phase can (and usually does) result in sentences referring to multiple facts.
This phase results in a tree-like structure such as the one shown in Figure 8.

Finally, the resulting document plan (with added templates) is provided to the lexicalization component
for further processing.

5.4. Lexicalization

The templates attached and filled by the previous stage of the pipeline can still contain unlexicalized
content in the slots of the templates. These unlexicalized segments most commonly come in the form
of the various sub-elements of the parameters fields. To handle these, the system allows for inclusion
of lexical resolvers.

These lexical resolvers, however, are not limited to just working with tags, but can be applied to transform
any token into one or more tokens. The resolvers are applied iteratively until the sentences stabilize,
meaning that a lexical resolver’s output can be processed further by another lexical resolver. They
thus give a significant increase in the expressive power of the system. This power, however, comes at

20 of 31

m Z
02
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

alr
‘s
“of”
Literal “subsequent”
- [ExtractBigrams:UNIT:tokens]
TRy
“were”
[DocumentPIanNode]—{DocumentPlanNode]
“this”
“step”
Literal “was”
/ H i, ”
Literal taken
Literal “as”

Figure 8: Part of a Document Plan template selection.

21 of 31

| Z
A&
®z
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

/ “Of”
“subsequent”

“tokens”

“qll”

“pairs"

MessagetaSk

[DocumentPIanNode]—{DocumentPlanNodej
‘s’
‘step”
was”

“taken’
‘as’

I\

Messagereason

Figure 9: Part of a Document Plan after Lexicalization.

the cost of a significantly more complex syntax — most of the resolvers do their matching via regular
expressions — and are thus not a panacea that would also replace the templates.

The lexicalization process is highly dependent on the details of message generation (rather, the individ-
ual task and reason parsers — see Section 5.1.3). For each slotted value in a template, the lexicalization
process must be able to produce a natural language expression that describes said slotted value. The
lexical resolvers are thus integrated to the system the same way the parsers are. They are illustrated in
Figure 3 as the small boxes labeled ‘Lexical Resolvers’. As they are associated with parsers, and thus
individual analyses and heuristics, they too are included in the same per-task and per-heuristic logical
components.

After lexicalization, the document plan is a tree akin to that shown in Figure 9. This modified document
plan is then passed to the next component in the pipeline.

22 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

5.5. Aggregation and Referring Expression Generation

It is at this point in the pipeline that the Reporter (see Deliverable D5.7) conducts processes known
as aggregation and referring expression generation. During aggregation, phrases are combined into
more complex sentences to improve the fluency of the output and to reduce repetition. During referring
expression generation, the system determines how it should refer to various domain entities.

In constructing the Explainer, we determined it has no need for a dedicated Aggregation component:
the sentences produced during the templating and lexicalization stages are already so complex that
aggregation would not improve the fluency of the text. The structure of the document is also such that
we have not been able to identify significant lexical repetition in subsequent sentences.

At the same time, the Explainer’s architecture explicitly allows for an aggregation component to be
included if the need for one is identified in the future. In fact, due to the Explainer being based on
the Reporter, it should be possible to largely reuse the aggregation component from the Reporter with
minor changes. These present versions of this component, as it is used in the Reporter, is described in
Deliverable D5.7.

Similarly, the Explainer has significantly less need to refer to domain entities than the Reporter. In fact,
the only domain entities being referenced by the present version of the Explainer are languages. As
such, the entity name resolution component of the Explainer is significantly simplified from that used in
the Reporter. At the same time, we have retained the overall design based on Named Entity Resolvers,
thus enabling this feature of the system to be extended in the future if necessary. At the present, the
only named entity resolver used is one for realizing the names of the languages.

5.6. Morphological Realization

While the English language running example we have been using is very close to correct language,
the processing pipeline is not yet complete. Especially in cases of more complex morphology, certain
words in the document plan still need to be inflected into their right morphological forms. In English, this
is relatively straightforward. However, in other languages such as Finnish, the morphological realization
process is significantly more complex.

During morphological realization, each token of the document plan is inspected individually. If it contains
morphological information, such as a ‘case’ attribute, the token and the case are handed to a language
specific morphological realizer (shown in Figure 3) which correctly inflects the token.

We have implemented realization systems for both English and Finnish using the UralicNLP library [26].
The English language realization component is at this point unused, as the English morphology is rela-
tively simple and the little inflection necessary (mostly with regard to number) was simpler to implement
on the template level. Similarly, we have found no need for French or German morphological tools. If,
in the future, need for German or French morphological realization is needed, similar 3rd party tools
should be integrated into the Explainer for said languages.

5.7. Realization into HTML

Finally, the document plan, which has been modified by all the previous components, is given to the
surface realizer to be realized into a format that can be displayed to the end user. As seen in Figure 9,

23 of 31

| Z
A&
®z
M w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

» The 10 most salient named entities were identified from the corpus. This
was done as part of initializing a new experiment.

» The change of sentiment towards identified entities over time was iden-
tified. This step was taken because the preceding step found highly
interesting results which the Investigator wants to expand upon.

» The dataset was split by different values of the 'NEWSPAPER_NAME’
facets. This action was taken because the original collection was rela-
tively large.

» The publication years, newspapers names and languages of the doc-
uments were extracted. This step was taken because the Investigator
had previously built a new collection of documents and wants to begin
analyzing it.

Figure 10: Extracts of Explainer outputs.

the document plan at the onset of surface realization is in a state where natural language expressions
can be formed by traversing the leaves of the tree.

This traversal does not yet, however, completely flatten the tree structure. Rather, it retains the higher-
level nodes of the document plan so that, for example, the paragraph structure is not lost. At the same
time, the surface realizer adds typographical details such as capitalizing the first word of each sentence
and adding sentence-final punctuation.

The final stage of the surface realization is the production of a flat text representation which incorporates
any necessary Hypertext Markup Language (HTML) tags. Currently, the Explainer can produce three
types of different HTML structures: text paragraphs such as found in standard text documents, list
structures where the individual sentences are presented as bullet points and enumerated lists.

Extracts of Explainer outputs are shown in Figure 10.

6. Integration with Assistant Control

The Explainer is integrated to the other NewsEye components in three ways. First, it communicates
with the Controller of the Personal Research Assistant, and through it, the Investigator. Second, the
Explainer contains functionalities that enable it to describe the tools applied by the Investigator. Third, it
is able to describe the internal reasoning, or the heuristics used by the Investigator.

We have described in Section 2.2 the relation of the NewsEye Explainer (i.e. the system described
in this Document) to the rest of the NewsEye Personal Research Assistant (Work Package 5), the
NewsEye User Interface (Work Package 7) and other components produced by Work Packages 3 and
4 in broad terms. In practice, to enable the Assistant Controller to start a generation task, the Explainer
offers a simple Application Programming Interface (API) with three endpoints.

24 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

The first endpoint, /api/languages, simply reports the languages supported by the Explainer. This
enables the technical users (such as the NewsEye Demonstrator user interface) to dynamically display
a list of available explanation languages to the end user. The second endpoint, /api/formats, returns
the set of valid body formatting options. The final endpoint, /api/explanation is used to generate
new explanations based on ordered list of task-reason pairs given as a parameter. Both API endpoints
produce responses in the industry standard format, JSON. The Explainer’s APl is described in detail,
with example responses, in Appendix A. It is in most ways identical to the Reporter API, as the needs
of the systems on this front are so well aligned.

7. Integration for Tasks and Reasons

While the Explainer is not directly connected to the tasks completed by the Investigator, it nevertheless
needs some tailoring for each of them. Without this tailoring, the Explainer cannot know how to describe
the task that was completed. As described in various parts of Section 5, this tailoring needs to occur on
three different levels: message generation, templates and lexicalization.

First, the message generator (see Section 5.1.3) needs to be tailored for each type of task so that the
task part of the task-reason pairs can be correctly translated to the fact data structures (see Section
5.1.1). This tailoring is provided in the format of Python 3 code.

Second, it must be ensured that each type of task has a set of templates (see Section 5.3) that allow
them to be expressed in natural language. These templates need to be provided in the templating
language employed by the Explainer. Of the three types of tailoring, this is the simplest as the new
templates can be simply appended to the template database.

Third, the lexicalization component (see Section 5.4) must be tailored so that all concepts embedded
into the templates can be expressed in natural language. Since these concepts are defined by the mes-
sage generator’s tailoring, corresponding tailoring needs to be made into the lexicalization component.
Like the message generator tailoring, this tailoring is also provided as Python 3 code.

The same elements, in identical formats, need also to be provided for each base heuristic built into the
Investigator, so that the reason components of the task-reason pairs can be generated, templatized and
lexicalized.

In the message generator and lexicalization cases, the Python 3 code that does the tailoring is provided
as a separate Python module that provides a simple API of two functions. The first function takes as
input the JSON description of the Investigator’'s task-reason pairs and return a list of messages (each
containing a single fact). The message generator then aggregates the lists received from the different
modules into a complete set that is provided to document planner. The second function conducts partial
lexicalization and both its input and output are a document plan. The function is expected to modify the
tree by lexicalizing all slots it can. By iteratively working the document plan through all the modules,
together with some general lexicalization conducted by the lexicalizer itself, the resulting document plan
is expected to be completely lexicalized.

25 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

8. Evaluation

To evaluate the Explainer, we must consider its success on two primary axes. First, we must consider
the crucial aspect of whether it is fit for purpose, i.e. whether the texts it produces are useful for the
end-users of the Assistant, and whether the Explainer fulfills the need it was supposed to. Second,
we must consider the various technical aspects of the Explainer against the design requirements of the
system. These requirements are not so much about the present state of the Explainer, but rather about
how well it is suited for future development. We will consider both of these aspects in turn.

Assessment of the usability/fitness of NewsEye tools for research purpose is the topic of Task T6.1 in
WP86. In that task, the Personal Research Assistant and its Explainer component have been tested by
the DH group, i.e., by the actual expert historians and humanities researches themselves. Please see
Deliverable D6.9, ‘Usability/Fit for research purpose test of tools and user interfaces (c)’ (26 Feb 2021).
In their report, the DH group viewed the Explainer as ‘a valuable help, especially when they retrace the
steps of their own searches and the PRA’s automated experiments’. Following further improvements
to the Explainer, in more recent project-internal feedback sessions the historians have been similarly
positive about the performance of the tool, describing it as ‘very helpful.” We conclude that the Explainer
fulfills the intended design objective.

This is, however, not to say that further improvements would not be possible. For one, some of the
internal feedback called for even more detail in the explanations. We believe this request exemplifies the
idea that the texts produced by the Explainer would benefit from tailoring to individual users: for highly
technical users, it would be beneficial to describe in great detail e.g. the parameters of the topic models
used, while such information would be simply linguistic noise for users without a technical background.
We note that similar observations were made in the context of the Reporter (see Deliverable D5.7). We
intend to continue to elicit and address feedback to fine-tune the level of detail in the Explainer outputs
to the end of the project.

In terms of technical suitability for continued development, we turn to the requirements analysis de-
scribed in Section 4. In that analysis, we identified that the system has high requirements for correct-
ness, extensibility and multilinguality, as well as a little need for high variation.

In terms of correctness, we believe the rule-based design of the Explainer fulfills the requirements
excellently. The system conducts no statistical (or otherwise) black-box processing and as a result we
are satisfied that the system’s output always faithfully reflects the system input. If we were to identify
programming errors that caused this to not be true in the future, the rule-based approach employed
herein allows us to surgically address the issues without having to fear that the modifications would
have introduced some completely unexpected and unrelated behaviour problems, as would be possible
in the case of e.g. retraining neural models.

The modular design of the system makes it highly extensible. In fact, the present system was con-
structed in an iterative manner, introducing the various processors one-by-one. Thus, the process of
creating the system itself has been a simulation of extending the system to be able to discuss new tasks
and heuristics as employed by the Investigator.

Similarly, in terms of multilinguality, the process of creating the system itself was used to validate that
the design of the system fulfills the multilinguality requirement. This was done by first implementing
the system in English, followed by extensions to Finnish, German and French. The success of these

26 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

extensions itself indicates that the fundamental system design is, indeed, multilingual at least within
the context of the majority of European languages. The combination of English, French and German
provides a good coverage of Indo-European languages, while the inclusion of Finnish indicates that
the system is also extensible to non-Indo-European languages as well as languages with significant
morphological variation. While this does not preclude a possibility that the architecture makes some
fundamental assumptions that would be incompatible with other languages we are not familiar with, we
believe the Explainer fulfills the multilinguality requirement well at least within the context of European
languages.

As with the Reporter (see Deliverable D5.7), in extending the system both with new languages and to
support new Investigator tasks and heuristics we identified that most of the extension time was spent on
sourcing translations from native-speaking domain experts. For languages with low morphological com-
plexity (e.g. English), this was by far the most time-costly part of the extension process. For languages
with significant morphological complexity (e.g. Finnish), the amount of effort needed is dependent on
whether there are any available third party morphological realization libraries. In the case of Finnish,
we were able to use the UralicNLP library, making this process relatively simple. However, if the system
were to be extended to support a completely new language with high morphological complexity and
without any available morphological realization libraries, a significant amount of effort would be needed
to produce the necessary tooling for morphological realization. At the same time, practically speaking,
the system will likely need only a relatively limited coverage of the language’s total morphology. For
example, in the case of Finnish, we only employ one or two cases from the 14 to 16 present in the
Finnish language, and even those in very limited contexts. As such, these considerations do not alter
our view that the system design fulfills both the requirements for extensibility and multilinguality well.

9. Conclusions

This report has described the Explainer component of the NewsEye Personal Research Assistant and
how it relates to the rest of the NewsEye project and especially the other components of the Personal
Research Assistant. The Explainer follows a modularized pipeline architecture for data-to-text NLG.
Analyzed in terms of both fitness for purpose and the system requirements identified in Section 4, we
believe the architecture described in Section 5 fulfills both well.

Overall, we believe that the Explainer is a successful application of NLG techniques to an extremely
challenging domain and application context. We view it as fulfilling both the technical and practical
requirements set for the system well. As noted above, the Explainer shares large portions of its code
with the Reporter (see Deliverable D5.7). As such, we believe that any future work undertaken on the
Reporter will translate to improved linguistic capabilities in the Explainer without significant additional
development work.

27 of 31

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

References

[1] Ross Turner, Somayajulu Sripada, Ehud Reiter, and lan P Davy. “Using spatial reference frames
to generate grounded textual summaries of georeferenced data”. In: Proceedings of the fifth in-
ternational natural language generation conference. Association for Computational Linguistics.
2008, pp. 16—24.

[2] Frangois Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne Freer, and
Cindy Sykes. “Automatic generation of textual summaries from neonatal intensive care data”. In:
Atrtificial Intelligence 173.7-8 (2009), pp. 789-816.

[8] Catalina Hallett and Donia Scott. “Structural variation in generated health reports”. In: Proceed-
ings of the Third International Workshop on Paraphrasing (IWP2005). Association for Computa-
tional Linguistics. 2005, pp. 33—40. URL: http://aclweb.org/anthology/I05-5005.

[4] Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu, and lan Davy. “Choosing words in computer-
generated weather forecasts”. In: Artificial Intelligence 167.1-2 (2005), pp. 137—169.

[5] Jose Coch. “Multimeteo: multilingual production of weather forecasts”. In: ELRA Newsletter 3.2
(1998).

[6] Eli Goldberg, Norbert Driedger, and Richard | Kittredge. “Using natural-language processing to
produce weather forecasts”. In: IEEE Expert 9.2 (1994), pp. 45-53.

[7] Lidija lordanskaja, Myunghee Kim, Richard Kittredge, Benoit Lavoie, and Alain Polguere. “Gener-
ation of extended bilingual statistical reports”. In: Proceedings of the 14th conference on Compu-
tational linguistics-Volume 3. Association for Computational Linguistics. 1992, pp. 1019—1023.

[8] Dietmar Rdsner. The automated news agency: SEMTEX-a text generator for German. Martinus
Nijhoff Publishers, 1987.

[9] Henry H. Eckerson. The Ultimate Guide to Natural Language Generation Definitions, Trends, and
Products. 2017.

[10] Stefanie Sirén-Heikel, Leo Leppénen, Carl-Gustav Lindén, and Asta Back. “Unboxing news au-
tomation: Exploring imagined affordances of automation in news journalism”. In: Nordic Journal
of Media Studies 1.1 (2019), pp. 47-66.

[11] Ehud Reiter and Robert Dale. Building natural language generation systems. Studies in Natural
Language Processing. Cambridge University Press. 2000.

[12] Albert Gatt and Emiel Krahmer. “Survey of the State of the Art in Natural Language Generation:
Core tasks, applications and evaluation”. In: Journal of Artificial Intelligence Research 61 (2018),
pp. 65-170.

[13] Dimitra Gkatzia. “Content Selection in Data-to-Text Systems: A Survey”. In: arXiv preprint (2016).
Available at https://arxiv.org/abs/1610.08375.

[14] Anja Belz and Eric Kow. “Extracting parallel fragments from comparable corpora for data-to-text
generation”. In: Proceedings of the 6th International Natural Language Generation Conference.
Association for Computational Linguistics. 2010, pp. 167-171.

[15] Nina Dethlefs. “Context-Sensitive Natural Language Generation: From Knowledge-Driven to Data-
Driven Techniques”. In: Language and Linguistics Compass 8.3 (2014), pp. 99-115.

[16] Ondrej Dusek, Jekaterina Novikova, and Verena Rieser. “Findings of the E2E NLG challenge”. In:
arXiv preprint arXiv:1810.01170 (2018).

[17] Ehud Reiter. Hallucination in Neural NLG. https://ehudreiter.com/2018/11/12/hallucination-
in-neural-nlg/. Accessed: 2020-03-02. 2018.

28 of 31

http://aclweb.org/anthology/I05-5005
https://arxiv.org/abs/1610.08375
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

[18] Chia-Wei Liu, Ryan Lowe, lulian V Serban, Michael Noseworthy, Laurent Charlin, and Joelle
Pineau. “How not to evaluate your dialogue system: An empirical study of unsupervised evaluation
metrics for dialogue response generation”. In: arXiv preprint arXiv:1603.08023 (2016).

[19] Ehud Reiter and Anja Belz. “An investigation into the validity of some metrics for automati-
cally evaluating natural language generation systems”. In: Computational Linguistics 35.4 (2009),
pp. 529-558.

[20] Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and Chin-Yew Lin. “A simple recipe towards
reducing hallucination in neural surface realisation”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. 2019, pp. 2673—2679.

[21] Ondrej Dusek, David M Howcroft, and Verena Rieser. “Semantic Noise Matters for Neural Natural
Language Generation”. In: Proceedings of the 12th International Conference on Natural Language
Generation. 2019, pp. 421-426.

[22] Ratish Puduppully, Li Dong, and Mirella Lapata. “Data-to-text generation with content selection
and planning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019,
pp. 6908—6915.

[23] Ratish Puduppully and Mirella Lapata. “Data-to-text Generation with Macro Planning”. In: arXiv
preprint arXiv:2102.02723 (2021).

[24] Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer. “Neural
data-to-text generation: A comparison between pipeline and end-to-end architectures”. In: arXiv
preprint arXiv:1908.09022 (2019).

[25] Leo Leppanen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen. “Data-Driven
News Generation for Automated Journalism”. In: Proceedings of the 10th International Confer-
ence on Natural Language Generation. 2017, pp. 188—197.

[26] Mika Hamalainen. “UralicNLP: An NLP Library for Uralic Languages”. In: Journal of Open Source
Software 4.37 (2019), p. 1345. DOI: 10.21105/joss . 01345.

29 of 31

https://doi.org/10.21105/joss.01345

o A~ W N

o A~ W N

N EWS
E& D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

0

A. Explainer API Description

A.1. Endpoints

* GET /api/languages - List supported languages
* GET /api/formats - List supported formats
* POST /api/explanation - Produce an explanation

A.2. GET /api/languages

Describes the languages supported by the Explainer. All languages in the response are valid to be used
as the language parameter in the POST /api/explanation request.

Parameters

None

Example Response

"languages": [

n en n

A.3. GET /api/formats

Describes the text formatting options supported by the Explainer. All formats in the response are valid
to be used as the format parameter in the POST /api/explanation request.

Parameters

None

Example Response

"formats": [
llpll s
"01",

n ul n

30 of 31

oz
1
=
™ w

D5.8: Personal Research Assistant: Explainer (final) CULT-COOP-09-2017

e

A.4. POST /api/explanation

Produces a natural language explanation from a sequence of task-reason pairs. The response consists
of two mandatory fields: language which describes the language of the explanation and body which
contains the body text of the explanation as HTML.

The response can also contain an additional errors field, which describes any errors encountered
during the generation process..

Parameters

Field Description

language The language the explanation should be written in. Valid values are those returned
by the GET /api/languages endpoint.

format The format of the body of the explanation. Valid values are those returned by GET
/api/formats endpoint. Currently supported values are ‘p’ for paragraphs of text, ‘ul’
for a list of bullet points and ‘o1’ for a list with numbered elements.

data A sequence of task-reason pairs, as provided by the Investigator as a JSON object.

Example Response

"language": "en",

"body":

"<p>...</p>",

31 of 31

	Executive Summary
	Introduction
	The NewsEye Personal Research Assistant
	An Overview of the Personal Research Assistant
	The interaction between the Investigator and the Explainer

	Natural Language Generation
	Natural Language Generation as a Process
	Methods for Data-to-Text Natural Language Generation

	Requirement Analysis
	The Explainer Architecture
	Input: Events, Facts and Messages
	The Fact data structure
	The Message data structure
	Fact and Message Generation

	Document Structuring
	Templates and Template Selection
	Lexicalization
	Aggregation and Referring Expression Generation
	Morphological Realization
	Realization into HTML

	Integration with Assistant Control
	Integration for Tasks and Reasons
	Evaluation
	Conclusions
	Explainer API Description

