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Executive summary

This document describes the Reporter component of the NewsEye Personal Research Assistant. The
Reporter is a tool for translating the results of the historical newspaper analyses conducted by the Inves-
tigator component of the Personal Research Assistant into natural language (e.g. English) descriptions.
By doing so, it facilitates a better understanding of the obtained results. The Reporter is constructed
as a Natural Language Generation application that takes as input the analyses of other NewsEye tools,
augmented with numeric information on their relative importance and surprisingness. This input is fed
into a pipeline of Natural Language Generation components that gradually transforms the input into
natural language. The individual parts of this pipeline are designed so as to be easily augmented and
extended without needing to modify the surrounding parts of the pipeline. Likewise, the pipeline ar-
chitecture is designed to allow relatively easy augmentation of the process to support new languages
by virtue of separating the domain-specific components from the language-specific components where
possible.
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1. Introduction

Historical newspapers collect information about cultural, political and social events in a more detailed
way than any other public record. At the same time, analysing the wealth of information in the newspaper
archives has traditionally been difficult and time-consuming. The NewsEye project develops methods
and tools for effective exploration and exploitation of historical newspaper archives.

The core concept of NewsEye is a set of tools and methods, from text recognition to automated explo-
ration of texts, that improve the users’ capability to access, analyze and use the content of historical
newspapers, stored in digital libraries (Figure 1).

This document describes the Reporter component of the Personal Research Assistant developed as
part of the NewsEye project. The Assistant carries out automated, iterative analysis of corpus content
and reports on the results, functioning as the user’s intelligent and transparent aid.

Figure 1: An overview of the NewsEye concept. This document describes the Reporter component of
the Personal Research Assistant (Work Package 5).
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This document is a complete description of the Reporter at the end of the NewsEye project, meaning
that it also contains information about the aspects of the system that remain unchanged from its previ-
ous descriptions in the non-public Deliverables D5.2 and D5.4. The version described in this Deliverable
has been modified to address user feedback regarding the style of the output texts, supports two new
languages (French and German) and the full suite of analytical tools used by the NewsEye Investigator
(see Deliverable D5.6). We have improved the structuring of documents discussing multiple datasets
and the aggregation and entity name resolution processes. Further changes have been made to e.g.
message generation and lexicalization. Finally, the reports can now include optional information that
allows a user interface, such as the NewsEye Demonstrator described in Deliverable D7.8, to link be-
tween reports and analysis results. An evaluation of the document planning process has been published
[1] in the Proceedings of the 23rd Nordic Conference on Computational Linguistics, and is included as
Appendix B.

2. The NewsEye Personal Research Assistant

This document describes the Reporter, a part of the larger system known as the NewsEye Personal
Research Assistant (‘Assistant’). In addition to the Reporter, the Assistant consists of an Investigator
component, an Explainer component and an additional Controller component. We next give an overview
of these components. A more detailed description of how the Reporter technically integrates with other
components in the NewsEye ecosystem is provided in Section 7.

As noted above, the Personal Research Assistant consists of three primary components (Investigator,
Reporter and Explainer) and a Controller component. The Controller component has two primary func-
tions. First, it provides an Application Programming Interface (API) for users, especially the NewsEye
User Interface (UI, See Work Package 7). This allows outside users to view the Assistant as a sin-
gle, unified, system so that they do not need to concern themselves with the internal division of labor
within the Assistant. The API is used via HTTPS queries and is described in more detail in Deliv-
erable D5.6, which details the present version of the Investigator. Second, as the name implies, the
Controller provides a central control mechanism that passes messages and results between the three
major subsystems of the Assistant, i.e. the Investigator, the Reporter and the Explainer.

This design facilitates the distribution of the Assistant components over multiple virtual or physical ma-
chines if such a distribution would become needed due to increasing amounts of users. Modifying the
Assistant so that a single Controller instance acts as a load balancer and distributor of work to multiple
instances of the subcomponents, while still requiring some programming and engineering effort, would
be relatively simple following standard approaches used in many other online services. In other words,
as the Reporter itself is ‘pure’ (i.e. running the Reporter on some input has no side effects that would
have an effect on a future run, and the produced text is always the same for a specific input) a relatively
simple extension of the Controller would be to have it spin up virtual machines running instances of the
Reporter in response to incoming API requests, using e.g. Docker.

The Investigator component, in broad terms, autonomously performs a series of queries over a news-
paper corpus using different tools provided by Work Packages 3 and 4 to identify potentially interesting
factors from the data. The Investigator is detailed in Deliverable D5.6. The analytical results obtained by
the Investigator are passed via the Controller to the Reporter component described in this Deliverable.
The controller also has the ability to cache and reuse investigation results using a database.
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Figure 2: Flow of requests and data between the components of the Personal Research Assistant and
the associated components developed in Work Packages 3, 4 and 7.

Having received the analytical results from the Assistant Controller, the Reporter then transforms the
results into natural language expressions. This transformation process is discussed in significant detail
in the rest of this Deliverable. The resulting natural language document is then returned to the Controller.
The Controller then sends the document to the party that requested it. In the most likely scenario, this
is the NewsEye User Interface that displays it to the end user.

Finally, the Assistant also contains an Explainer component. Whereas the Reporter describes what the
Investigator found in the corpus, the Explainer described how those findings were obtained and why
the Investigator believes them to be of interest. In other words, whereas the Reporter describes the
end result of a process, the Explainer describes the process itself. The final version of the Explainer
component is described in Deliverable D5.8.

In addition to this, as noted above, the Assistant also contains a database component which caches
analysis results obtained from the Investigator, reports obtained from the Reporter, the explanations
generated by the Explainer and other necessary data. An overview of the Personal Research Assistant’s
architecture is presented in Figure 2.

In terms of the division of labor between the Investigator and the Reporter, it is notable that the Reporter
does not conduct any additional investigative work or in any way enhance the results obtained from the
Investigator. It merely produces a natural language expression detailing the findings of the Investigator.
The only prerogative the Reporter has over the analysis results is its ability to limit the report to a certain
length. That is, if the analysis results in an amount of ‘potentially interesting’ results that is too large to
reasonably produce a concise report out of, the Reporter can and will omit some details from the final
report.
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Figure 3: Alignment of tasks from Reiter’s reference architecture [13] and the Assistant components.

3. Natural Language Generation

The general task conducted by the Reporter is known as Natural Language Generation, or NLG for
short. More specifically, the Reporter is performing ‘data-to-text NLG’, where ‘data’ refers to structured
data. That is, the Reporter is not designed to ingest unstructured data, such as raw text. In this section
we first give an overview of (data-to-text) NLG in general as well as how it can be viewed as a series of
subtasks, followed by a description of how the subtasks common to data-to-text NLG can be completed.

3.1. Natural Language Generation as a Process

A large number of data-to-text systems have been reported in the literature, in different domains, with
varying types of input data [2]. For example, BabyTalk [3] is an NLG system that generates medical
reports from sensors monitoring babies in Neonatal Intensive Care Units. Hallett and Scott [4] describe
a system for generating reports from events in medical records. Several systems have been developed
that generate weather forecasts from the output of weather computer simulation models [5, 6, 7]. Others
still generate summaries from employment statistics [8, 9]. In addition to these efforts, several commer-
cial NLG systems exist in a number of domains. Among the larger commercial players that provide NLG
products and/or services are Automated Insights, Arria, AX Semantics, Narrativa, Narrative Science,
and Yseop [10]. As demonstrated by the amount of commercial entities working in the domain, NLG
technology is of increasing interest even without the academia, for example in the newsroom, even if it
is not always clear to the non-technical stakeholders how to best employ the technology [11].

General data-to-text NLG systems normally involve three processes: deciding what to say (content
determination), how to organize it (document and sentence planning), and how to express it (surface
realization) [12]. A reference architecture for data-to-text systems is presented by Reiter [13]. In this ref-
erence architecture, Reiter builds on the general NLG architecture by dividing the data-to-text generation
process into the following subcomponents: signal analysis, data interpretation, document planning, and
microplanning and realization. Figure 3 demonstrates how these components align with the different
sub-components of the Personal Research Assistant.

The signal analysis stage analyses numerical and other input data, looking for patterns and trends, and
the data interpretation stage identifies more complex and domain-specific messages. Here, messages
are pieces of information that are meaningful in isolation and could be conveyed to the reader via
the final text document produced by the data-to-text NLG system. In terms of the Personal Research
Assistant, these processes are viewed as being completed by the Investigator (see Deliverable D5.6,
released concurrently with this Deliverable) and as such are not explored further in this document.

Document planning is a stage that ingests the so-called ‘messages’ produced by the previous stage and
organizes them into a structure that defines in which order they should appear in the final document.
This initial version of the document plan is based solely on the information of the messages and can be
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modified later in the process for better linguistic fluency. For example, if the document planning phase
decides to place two pieces of information one after another in the document plan, a further stage of
the generation process might place a third piece of information between them if it makes the resulting
text more fluent.

The following stage, microplanning and realization, takes as input the document plan and produces the
final text output. This stage is often further divided into several subtasks that are treated separately.
These subtasks include selecting the basic phrases that are used to express the individual pieces of
information, aggregation, lexicalization and surface realization.

Finally, we emphasize that the above characterization is more of an aide for reasoning about the types
of decisions NLG systems have to complete. Previous NLG systems have employed a wide variety
of techniques that can make the distinctions between the aforementioned phases of the generation
process fuzzy or even remove them altogether [14].

3.2. Methods for Data-to-Text Natural Language Generation

In addition to different ways of dividing the larger generation tasks to smaller subtasks, there are also
several competing methods for completing said subtasks [14]. In broad terms, we identify two main
approaches: rule-based approaches and trainable approaches.

Rule-based systems are based on handcrafted rules, corpus analysis and expert consultations [15].
They are usually more robust than trainable approaches and are widely used in industry and for com-
mercial purposes. As the rule-based approach is finely controlled, the output can be guaranteed to be
more understandable by humans. Rules also provide relative high guarantees of correctness, and in
case of errors, can be easily corrected by modifying the system’s source code. At the same time, rules
are limited, especially when the domain complexity increases and the generation of the rules can be an
expensive effort requiring significant input from domain experts.

Trainable approaches, such as neural networks, reinforcement learning, or Hidden Markov Models are
more flexible, easier to develop, and more domain-independent. However, one of the challenges of
these trainable approaches is the lack of sufficient quantity of aligned datasets that can be used to
derive rules or train the NLG system [15]. Even when the data is available, the expected output text is
often not aligned with the input data, and thus cannot be used directly for the development of an NLG
system [16].

At the onset of the NewsEye research process, we identified that the state of the art in these train-
able approaches also seemed to suffer from a series of further problems that were relevant for the
NewsEye context. First, purely trainable approaches struggled to reach the linguistic depth of their
competitors [17], with even the then-most-recent trainable end-to-end architectures failing to conclu-
sively outperform rule-based approaches even in a relatively simple and constrained generation task
when evaluated by humans [18]. Second, most trainable approaches suffered from a lack of trans-
parent generation process. This chiefly manifested in the difficulty of detecting and correcting system
errors: it was exceedingly difficult to guarantee any specific level of correctness for an NLG system
based on neural networks, and in case of problems in the system it was not possible to conduct surgical
modifications. Rather, especially in case of (deep) neural networks, the only solution was to further train
the system with more training data. Whether this retraining and fine-tuning results in some unknown
pathological behaviour in some corner cases would be difficult if not impossible to determine. Third,

10 of 61



D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

empirical evidence indicated that such systems were – and continue to be – prone to overfitting to the
training data, which manifests as ‘hallucination’, where the system produces output that is not grounded
in the underlying data [19]. These problems were made more complicated by the fact that automated
evaluation of an NLG system’s quality was – and continues to be – an unsolved problem, with evidence
suggesting that the most popular automated metrics fail to properly correlate with the judgments of
human evaluators [14, 18, 20, 21].

Our interpretation of the current state of the art in NLG at the onset of the NewsEye research project
was thus that trainable approaches were mainly ready for real-world use in situations where either
the produced texts were very short (i.e. scenarios similar to the E2E Challenge described by Dušek,
Novikova, and Rieser [18]) or in scenarios where even major mistakes in individual pieces of output are
not problematic. While many of the problems identified above have seen significant scholarly attention,
with attention being directed especially towards the hallucination problem [22, 23], the present state of
the art in NLG has not significantly modified the above analysis. For example, hallucination continues
to plague even state-of-the-art neural systems [24, 25]. As such, we do not believe the present state
of the art in NLG is sufficiently different from that at the onset of the NewsEye project, and thus our
requirement analysis (see below) conducted at the onset of the project remains valid.

4. Requirement Analysis

The NewsEye Personal Research Assistant is intended to be used for exploration of historical news-
paper corpora. Part of the intended user base is formed by academics such as historians and social
scientists. While the academic users are likely to independently verify any findings reported by the
Reporter, any mistakes are going to erode trust in the system and make the users less likely to use
it in the future. Furthermore, other user demographics such as lay-historians are not necessarily so
thorough in their investigations and might skip the manual verification of the presented results. As such,
the Reporter component has a significant correctness requirement in that it does not misrepresent the
analyses conducted by the Investigator. This requirement speaks against using a trainable approach to
NLG.

The NewsEye Personal Research Assistant is also intended to be easily extensible so that it can take
advantage of new, improved, analytical tools as they become available. Adding such a new tool should
be straightforward and should not invalidate previous work. This requirement speaks towards a modular
system, where each analytical tool is accompanied by a small module that can be incorporated into the
Reporter and is in charge of any decisions specific to that one analytical tool’s output.

The Assistant has to be explainable. That is, it cannot function as a black box where the internal
workings are either completely opaque or so complex as to not be understandable by a human. This
requirement speaks against using a trainable approach based on, e.g. neural networks.

The Reporter must be able to produce reports in multiple languages. While this requirement does not
specifically require any specific approach, taken together with the extensibility requirement it speaks for
a modular approach. A modular system can be constructed so that the language-independent parts of
the generation process can be shared by the different languages. This further improves the extensibility
of the system by allowing the system to be extended to new languages without having to duplicate all of
its components.
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As a summary, we identify the following requirements and their implications for the system:

• Correctness - Suggests a rule-based approach
• Extensibility - Suggests a modular approach
• Explainability - Suggests a rule-based approach
• Multilinguality - Suggests a modular approach

As a whole, the requirement analysis suggests that the Reporter should be a modular system based on
human-produced rules. This analysis is further supported by the lack of any suitable training data set
that would be required for a trainable approach to be feasible.

At the same time, the requirement analysis does not completely forbid the use of trainable methods as
parts of the larger system in settings where they are unable to significantly affect the correctness of the
output. Early results in other domains indicate that dividing the unified, end-to-end, neural NLG model
into separate, but still neural, subcomponents increases the performance of the system [24, 26]. While
the limitations of such models are far from known, even these early successes indicate that a hybrid
system employing both rule-based and neural modules could be successful. This further suggests a
modular architecture that facilitates the inclusion of neural components if they are developed.

5. Reporter Architecture

Based on the requirement analysis described above, it was determined that a principally rule-based,
modular, Natural Language Generation (NLG) system was the best fit for the Reporter. As such, we
decided to base our system on a modification of the multilingual news report generator previously pro-
duced by the University of Helsinki Department of Computer Science [27]. The modified architecture
(see Figure 4) is formulated as a pipeline where raw data and relevant parameters are fed in at the
start. This input is then processed through a pipeline of individual components, where the components
of the pipeline each modify the input towards the final output. At the end of the pipeline, a finished
natural language text document is produced as the output. In the next sections, we will step through the
generation process, discussing each pipeline component in turn.

5.1. Input: Facts and Messages

The primary input to the system are the results of the analyses conducted by the Investigator compo-
nent. These results are provided to the Reporter in the JavaScript Object Notation (JSON) format via
an HTTP(S) request. The JSON format [28, 29] is an industry standard format for moving data between
services using HTTP(S). Figure 5 shows an excerpt of what the system input looks like.

The Reporter refers to information in two primary formats: as facts (see Section 5.1.1) and as messages
(see Section 5.1.2). A fact represents both an immutable point of data (e.g. a numeric value obtained
as an analytical result) and its associated metadata, i.e. what information it describes. It is a minimal
piece of information that is expressible to a human reader and the smallest informational unit used by
the system. The message wraps a fact and provides a place for any mutable data that needs to be
associated with a specific fact for the generation process to succeed.
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Figure 4: High-level architecture of the Reporter. Sharp-cornered elements represent various resources
available to the Reporter. Sand-colored elements (e.g. Morphological realizers) are language-
specific but not directly related to any specific analytical tool. Sapphire-colored elements (e.g.
Result Parser) are specific to an analytical tool, but not to any language. Dashed elements
(e.g. TemplateDB) are specific to both. The green middle column forms the main NLG pipeline.

13 of 61



D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

5.1.1. The Fact data structure

The fields of the Fact data structure are detailed in Table 1, together with example values. The fields
corpus and corpus_type define what corpus the fact is discussing. It is important to note here, that
the concept of ‘corpus’ is in this case relatively flexible and refers, in practice, to any addressable and
investigable collection of documents. Most trivially, this is for example the complete ONB newspaper
corpus. More likely, however, it is a collection of documents defined by some user query, such as ‘all
articles that contain the keyword “femme”.’ These fields would also contain any temporal information
specific to the corpus, i.e. that the corpus being analyzed contains articles from a specific decade.

The fields timestamp_from, timestamp_to and timestamp_type enable the inclusion of additional tem-
poral information specific to the analysis. This is primarily relevant to, for example, time series analysis
where the system could want to report that in a corpus spanning years 1900 to 1914, the occurences of
a search term peak on years 1908 and 1909. Here, the corpus span would be encoded into the corpus
field whereas the start and end years of the peak would be encoded in the timestamp fields.

1 [
2 {
3 " processor ": " ExtractFacets ",
4 " search_query ": {
5 "q": "femme"
6 },
7 ...,
8 " task_result ": {
9 " result ": {

10 " PUB_YEAR ": {
11 "1935": 6420,
12 "1936": 4502,
13 ...
14 },
15 " LANGUAGE ": {
16 "fr": 114385,
17 "fi": 134
18 },
19 " NEWSPAPER_NAME ": {
20 " l_ouvre ": 114385,
21 " uusi_suometar ": 134
22 }
23 }
24 }
25 },
26 ...
27 ]

Figure 5: An example of the analysis results provided by the Investigator. Note that the data structure
has been edited for length and that both metadata and parts of the results have been omitted.
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Field Example value
corpus [q:femme]
corpus_type query
timestamp_from None
timestamp_to None
timestamp_type all_time
analysis_type ExtractFacets:absolute_count
result_key [PUB_YEAR:1936]
result_value 4502
interestingness 1

Table 1: The fields of the ‘fact’ data structure and an example of their possible values. This fictional
example fact would correspond to the idea that a corpus consisting of all the news articles that
match the query ‘femme’ contains 4502 articles published during the year 1936.

The timestamp_type describes how to interpret the timestamps in the from and to fields. For ex-
ample, the value pair timestamp_from = 2019/01/01 00:00 and timestamp_to = 2019/12/31 23:59
could be reasonably reported as ‘during the year 2019’, as ‘between January and December 2019’
or as ‘Between 01/01/2019 and 31/12/2019’ depending on what the context is. The use of a single
timestamp_type field, rather than a separate field for both values, enforces that the timestamps are
expressed in the same format. This simplifies the generation process as we explicitly disallow many
complex and hard-to-interpret expressions such as ‘between the 1860s and December 1st of 1973’.

The fields analysis_type, result_key and result_value together describe a singular value obtained
by the Investigator during conduction of some analysis. For example the values analysis_type =
ExtractFacets:absolute_count, result_key = [PUB_YEAR:1936] and result_value = 4502 together
describe the idea that a corpus consisting of all the news articles that match the query ‘femme’ contains
4502 articles published during the year 1936. Modifying the field analysis_type to instead contain
the value ‘ExtractFacets:percentage’, together with modifying the field result_value to contain the
value ‘13’, would then indicate that 13 % of the articles in the corpus were published during 1936.

Finally, the fact contains an interestingness field that describes how interesting the fact is in the view of
the Investigator. This information is crucial in the following stages where the system uses it to determine
what facts should be part of the document and in what order. The Reporter only mandates that the
interestingness value is a positive number so that a larger number indicates a more interesting fact
and a zero indicates something that is ‘absolute not interesting’. The determination of this value, as well
as whether there is some ‘maximal’ value, is left to the Investigator.

We note that, as demonstrated in Table 1, some of the values are presented as tags. The system
places no constrictions on how these tags are formulated, thus enabling additional meta-information to
be added to the results on a per-analysis basis. Similarly, the analysis_type field encodes explicitly the
analytical tool behind the fact as its first element, with the rest of the field’s value consisting of a context-
specific hierarchy describing the relevant parameters and metadata, each separated by a colon, ‘:‘.
This formulation is used later on, in the content determination phase, to assess the degree of similarity
between multiple analytical results.
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Field Description
facts The facts related by this message. By default

contains only a single fact, but can contain
multiple, e.g. as a result of aggregation.

template The template associated with the message.
Initially empty, gets assigned during template
selection.

score A potentially modified interestingess value.

Table 2: The fields of the ‘message’ data structure and a description of their contents.

During the processing performed by the Reporter, the fact itself is an immutable result of the analysis.
In other words, the Reporter never modifies the fact itself once it has been created. This ensures that
the underlying analysis results remain unchanged through the generation process.

5.1.2. The Message data structure

As noted above, the fact data structures are considered immutable and the generation is not to modify
them in any way. In fact, they are technically implemented in a way that makes it impossible for them
to be modified by accident. This ensures the underlying information within the generation always stays
true. At the same time, the system needs to attach information to the facts, such as what template (see
Section 5.3) is to be used to express the fact. For this reason, we encapsulate the immutable facts in
mutable data structures called ‘messages’. In the present version of the Reporter, the message data
structures contain the fields shown in Table 2.

Beyond the mutability, another notable distinguishing feature between fact and messages is that a single
message may contain multiple facts. This can happen as a result of, e.g. the aggregation phase where
multiple templates are combined into a single template which then expresses multiple facts.

The field score allows for modification of the underlying fact’s interestingness value without overwriting
the original value. This is useful, for example, in the document structuring process where we wish to
consider not only how interesting a fact is, but also how well it fits a specific context. All the score fields
are, however, initialized to the underlying facts’ interestingness values.

The message can also be extended to transfer other information relevant to the generation process. For
example, in a previous system we have used the message to transfer information regarding the ‘polarity’
of the fact, i.e. whether it is a positive or a negative thing, to determine which conjunctions are to be
used between two facts.

5.1.3. Fact and Message Generation

The facts and messages are generated from the analytical results provided by the Investigator by the
message generator. It ingests the JSON formatted analysis report and outputs the messages and facts,
which are in turn ingested by the document planner.

16 of 61



D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

Notably, the specifics of how an analysis result is to be parsed is dependent on the precise analytical
tool used by the Investigator (see Deliverable 5.6). This means, in practice, that the parsing functionality
of the message generator needs to be adjusted every time the tools used by the Investigator are altered,
or when a new tool is integrated into the Investigator.

As such, the message generator is constructed so that it delegates the parsing to a set of individual
parsers, each of which contain a method for identifying the relevant subset of results it can parse and
returning the resulting Facts to the main program. These individual parsers are depicted in Figure 4 as
the small boxes with the label ‘Result Parsers’.

The processing is done on the level of the output of the analyses done by the Investigator. For example,
the Investigator might implement an analysis called ‘ExtractFacets‘ the result of which would be a data
structure such as that presented in Figure 5, above. Note how the input of the message generation
component is a list of one or more such results. The message generator component then applies each
result parser known to it to each of the results, collecting the generated messages. This procedure is
described below in pseudocode as function GENERATEMESSAGES in Algorithm 1.

Algorithm 1 Pseudocode describing the relation between the analytical results (see Figure 5) and the
result parsers. Note how each analytical result must be parsed in isolation, but can be parsed by multiple
ResultParsers.

function GENERATEMESSAGES(AnalyticalResults, ResultParsers)
Messages← []
for all AnalyticalResult ∈ AnalyticalResults do

for all ResultParser ∈ ResultParsers do
NewMessages← ResultParser.apply(AnalyticalResult)
Messages.extend(NewMessages)

end for
end for
return Messages

end function

The upside of this formulation of the message generator is that it allows for significant decoupling of the
Reporter’s core functionality from the specifics of individual tools, thus enabling easier modifiability and
simpler integration of any future tools. This process only requires a minor amount of integration work
from a programmer.

By default, there is a one-to-one correspondence between a type of analysis conducted by the Inves-
tigator and the associated Result Parser. However, as can be observed from Algorithm 1, this is not a
strict requirement and one-to-many relations can be implemented where necessary. At the same time,
the formulation of Algorithm 1 prevents the inclusion of many-to-one result parsers, i.e. parsers that ob-
serve the results of multiple analytical tools to generate their messages. This discourages large-scale
post-hoc analysis conducted within the Reporter.

One-to-Many relations are potentially beneficial especially in situations where some relevant information
is not directly available from the result, but rather must be separately calculated. As a more concrete
example, the data structure described in Figure 5 lacks a field denoting the total number of articles.
This number can easily be retrieved by summing over any one of the ‘PUB_YEAR’, ‘LANGUAGE ’ or
‘NEWSPAPER_NAME ’ listings using a separate Result Parser. This, however, begins fairly quickly to
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encroach of the responsibilities of the Investigator and such additional analysis should be implemented
primarily in the Investigator, as noted above, and is discouraged.

At the present, the Reporter conducts a very limited amount of such post-hoc analysis. For example,
in the case of TrackNameSentiment processor’s result, which describes how the sentiment towards
an entity has changed over some time frame, the relevant message generator extracts the minimal,
maximal and mean sentiments, as well as the number of years within the time frame wherein the entity
is discussed in the corpus. Without this post-hoc analysis, the Reporter would be reduced to reporting
only a collection of individual yearly datapoints.

As noted above, such post-hoc analysis is not philosophically in the purview of the Reporter and should
occur at the Investigator component. As such, we have refrained from implementing such post-hoc
analyses in the other message generators used by the Reporter. The incorporation of post-hoc analysis
in the TrackNameSentiment tool simply demonstrates how such capabilities could be added, if future
developments would warrant a change in the responsibilities of the Reporter and the Investigator.

While the message generation process is largely language agnostic (i.e. independent of what lan-
guage is being produced), a small exception is made to account for some entities in analyses such as
TrackNameSentiment (which details how the sentiment towards and entity has changed over time) and
ExtractNames (which identifies named entities from the corpus). Both of these output identifiers such as
entity_LOC_Q1757 that identify a named entity in a language-agnostic manner. To enable translation of
these abstract identifiers to language specific phrases (such as ‘Helsinki’ in case of entity_LOC_Q1757),
the Reporter needs a dictionary of the relevant entities’ names in the languages supported by the Re-
porter.

This information could be obtained by querying the SOLR database (See ‘Enriched data (WP3+WP4)’
in Figure 2), but this would necessitate making the Reporter aware of the relevant APIs and network
addresses, thus massively increased the network topology’s complexity. To avoid this increased com-
plexity, the Investigator instead queries the SOLR database for the relevant dictionary and provides it
as part of the Explainer’s input. To simplify the generation process, instead of passing the dictionary
through the complete NLG stack to the Named Entity Resolution module (See Figure 4), the message
generation module replaces the language agnostic identifier with a language specific expression as part
of the message generation process.

This replacement operation raises a non-trivial question in cases wherein the Reporter is discussing
documents in one language (e.g. Finnish) in a report written in another language (e.g. English). Namely,
should entities be referred to in the language used in the text, or in the language of the report? In other
words, should the document refer to the city of Vyborg as ‘Vyborg’ (using the language of the report);
as ‘Viipuri’, as it likely appears in the Finnish language text; or using all as ‘Viipuri (Vyborg)’. While all
three options have upsides and downsides, we have elected to use the language of the report as the
overriding option. This was done to account for the observation that while a report is always monolingual
(i.e. has a unique correct entity name), a corpus being analyzed can consist of documents in multiple
languages. In the case of a multilingual corpus, the other methods could produce extremely unwieldy
natural language expressions as worst-case behaviour.

The output of the message generation process is an unordered set of message objects, each containing
a single immutable Fact.
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5.2. Document Structuring

The message data structures, which in turn contain the fact data structures, are provided as input to
the next component in the pipeline, the document planner. The facts and messages, obtained originally
from the Investigator, describe what could be described in the report before any practical limitations,
such as the length of the resulting document, are taken into account. The document planning stage
determines which facts to actually express and how to structure and order them in a report given these
additional constraints.

The output of this phase of the process is a tree structure that largely corresponds to the paragraphs
(or other equivalent high level structures) of the result document. This structuring is driven solely by the
contents of the messages, with the bulk of the effort being based on the interestingness scores returned
by the Investigator.

During this data-driven document planning, the system assigns facts in the document plan one of two
roles: ‘nucleus’ or ‘satellite’. The terminology ‘nucleus’ and ‘satellite’ is most commonly associated with
the Rhetorical Structure Theory (RST) [30], where a nucleus contains the most important, information
and are to a degree independent, while satellites provide additional information about the nuclei and
are usually not meaningful without the relevant nucleus. Our system combines facets of the RST with
the orbital theory of news structuring as presented by White [31], who uses the same nucleus-satellite
terminology to describe higher-level structures. White describes hard news as consisting of an orbital
structure where a lead nucleus, described usually in the headline and the first paragraph, is supported
by orbiting satellites adding further information to the story. White notes that these satellites can often be
ordered relatively freely without significantly affecting the story. We modify White’s theory by considering
each paragraph as consisting of a separate orbital structure of a nucleus and satellites phrases, thus
bridging between White’s high-level nucleus-satellite structures and the low-level RST nucleus-satellite-
relations by considering the overall document to be a recursive structure consisting of nucleus-satellite
relation.

The procedure that creates the document plan is described as pseudocode in Algorithm 2. The gen-
eration progresses paragraph-by-paragraph, first selecting a suitable nucleus based on the previously
selected nuclei, and then selecting suitable satellites for that nucleus to fill in the paragraph.

The system bases its decisions on two factors: the interestingness scores of the messages and a
concept of thematic similarity, which describes how similar the topics of two arbitrary messages are.
The goal is to produce a text that contains as interesting messages as possible, while also enforcing a
level of coherence into the document.

In the case of the first paragraph, the SelectNucleus procedure simply selects the most interesting fact
in the system input (i.e. the Investigator’s output) as the nucleus of the first paragraph. This is a special
case, and later nuclei are selected using a more complex process, described later-on.

To this nucleus, additional supporting facts or satellites, are added, as determined by the SELECT-
SATELLITES procedure, described in pseudocode in Algorithm 3. These satellites are selected from
among all available, so far unused, messages one-by-one. After each selection, the available, so far
unused, satellites’ interestingness scores are recalculated to reflect the satellites’ similarity to both the
previously selected satellite and the nucleus of the paragraph. That is, when selecting the first satel-
lite, the similarity is measured against the nucleus only, whereas for the third satellite, the similarity
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Algorithm 2 Pseudocode describing generation of the document plan from messages.
function GENERATEDOCUMENTPLAN(Messages)

Root← newDocumentP lanNode

SelectedNuclei← []
while True do

if reached maximum length or Messages = ∅ then
return Root

end if
Node← newDocumentP lanNode

Nucleus← SELECTNUCLEUS(Messages, SelectedNuclei)
if Nucleus = null or Nucleus is not sufficiently interesting for inclusion then

return Root

end if
Satellites← SELECTSATELLITES(Nucleus, Messages)
Node.children = [Nucleus]
Node.children.extend(Satellites)
SelectedNuclei.insert(Nucleus)
Root.children.insert(Node)

end while
end function

is measured against the second satellite and the nucleus. The similarity between two messages is a
determined using a combination of ANALYSISSIMILARITY (for the nucleus and the previous satellite) and
CONTEXTSIMILARITY (for the previous satellite only) procedures. Both procedures produce a weight
that is then used to update a candidate message’s score.

The intuition behind this approach is to maximize the interestingness of the paragraph’s contents, while
also enforcing a certain level of coherence in the text. By continuously measuring against the previously
selected satellite, the procedure allows for some thematic drift within the paragraph. That is, the theme
of the paragraph can evolve over time. At the same time, the inclusion of the similarity measure against
the nucleus also ensures that the theme does not drift excessively far from the original theme of the
paragraph.

The CONTEXTSIMILARITY procedure considers two messages to be more similar in context if they
share the values of their underlying facts’ corpus, timestamp_to, timestamp_from, and result_key
fields. For every field for which the two messages’ field values are the same, a similarity value (initially
1) is multiplied by a weight. These weights are set per-field, which in turn enables the system to
consider certain types of similarities to be more important than others for the purposes of document
structuring. At the present, the weight for the corpus field is 1.5; the weights for the timestamp_from and
timestamp_to fields are 1.1; and the weight for the result_key field is 5. As such, the result_key field
dominates the selection process, while still accounting for the similarities of the other contextual fields.
We note that these weights are tuneable hyperparameters, and can be further modified to account for
user feedback.

The ANALYSISSIMILARITY procedures two messages to be similar in analysis based on the analysis_type
field. As noted in Section 5.1.1, the field contains a colon-separated hierarchy of labels describing the
analysis behind the fact. The first item is always the name of the analytical tool, while subsequent items
contain additional information. For example, the fields of three distinct facts could contain the value
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Algorithm 3 Pseudocode describing how satellites are selected for a paragraph
function SELECTSATELLITES(Nucleus, Messages)

SelectedSatellites← []
prev ← Nucleus

while True do
if maximum satellite count reached then

return SelectedSatellites

end if
for all m ∈Messages do

m.score← m.score× ANALYSISSIMILARITY(m, prev)
m.score← m.score× ANALYSISSIMILARITY(m, Nucleus)
m.score← m.score× CONTEXTSIMILARITY(m, prev)

end for
FilteredMessages← FILTERBYINTERESTINGNESS(Messages)
if FilteredMessages = ∅ then

if minimum satellite count reached then
return SelectedSatellites

else if Messages ̸= ∅ then
FilteredMessages←Messages

else
return SelectedSatellites

end if
end if
NewSatellite← arg maxm∈F ilteredMessages m.score

SelectedSatellites.append(NewSatellite)
Messages.remove(NewSatellite)
prev ← NewSatellite

end while
end function

ExtractFacets:absolute_count for fact F1, the value ExtractFacets:percentage for fact F2 and the
value GenerateTimeSeries:absolute_count:max_val for fact F3. Intuitively, F1 and F2 are thematically
closer than F1 and F3. We model this observation into a measure of similarity between two facts A and
B as

sim(A, B) = 2p(A, B)
ℓ(A) + ℓ(B) (1)

where ℓ(A) is the length – in colon-separated units – of A’s analysis_type field. That is, ℓ(F1) = 2 and
ℓ(F3) = 3. Similarly, p(A, B) is the length – in colon-separated units – of the shared prefix between A
and B’s analysis_type fields. For example, p(F1, F2) = 1 whereas p(F1, F3) = 0. Applying the formula
to various pairs of analysis_type fields, we observe the behavior shown in Table 3, which matches our
intuition of the degree of similarity.

Presented in terms of a string distance, the above metric is the fraction of the shared prefix out of the
total length of the inputs. This formulation also accounts for potentially different length inputs. This is
required, for example, in the case of the TopicModelDocSetComparison tool, which compares two sets
of documents using a topic model. There, the analysis_type values range from 3 to 4 colon-separated
units.
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A B ℓ(A) ℓ(B) p(A, B) sim(A, B)
a:b:c a:b:c 3 3 3 1
a:b:c a:b 3 2 2 0.6
a:b:c a 3 1 1 0.5
g:e:f a 3 1 0 0
g:e:f a:b:c 3 3 0 0
a:b:c a:b:x 3 3 2 0.6
a:b:c a:x:y 3 3 1 0.3
a:b a:x 2 2 1 0.5
a:b a:x:y 2 3 1 0.4
a x 1 1 0 0

Table 3: Examples of the behavior of the analytical similarity metric.

As noted in Algorithm 3, the scores are recalculated after every new satellite has been selected to ac-
count for the effect of that satellites inclusion on the similarities. Satellites are added in this manner until
the paragraph is considered full (by virtue of reaching a configurable maximum length) or the system
runs out of ‘sufficiently interesting’ facts that pertain to the theme of the paragraph, as determined by the
procedure FilterByInterestingness. Here, the messages’ scores are compared to both an absolute
and a relative threshold value. The message is left in the candidate set if the score is either greater
than than the absolute threshold value tabs = 0.2, or greater than the score of the paragraphs nucleus
multiplied by trel = 0.5. Both tabs and trel are tuneable hyperparameters and can be trivially modified
based on user feedback.

The procedure also accounts for a tuneable minimal satellite count. If there are no more sufficiently
interesting messages, but the minimal threshold has not been reached, the threshold of ‘sufficiently’ is
relaxed so that even very uninteresting messages can be used if available, until the minimal paragraph
length is reached. Based on experimentation, we set the minimal satellite count at 4, meaning that
almost all paragraphs should be at least 5 messages long (4 satellites + 1 nucleus). The minimal length
can be ignored only if the messages completely run out during the generation process.

After the satellites have been selected, a new document plan node is constructed out of them and the
nucleus, which is then added to the overall document plan.

After this, the nucleus of the next paragraph is selected using the NEXTNUCLEUS procedure. This
procedure is described as pseudocode in Algorithm 4.

In terms of building the document, an important goal is to also maximize the overall coverage of the re-
sults described to the user across the paragraphs. Whereas, with the satellites, we sought to maximize
the semantic similarity between the satellites, the reverse holds for the nuclei. In other words, we want
the different paragraphs to discuss as different things as possible.

To this end, Algorithm 4 seeks to enforce the requirement that each paragraph’s nucleus must be a
message about a so-far undiscussed analytical tool. This, however, causes a problem when all the
results available for discussion are from a single analytical tool. For this reason, we specifically allow
that a previously discussed analysis can be the nucleus of a new paragraph in the case where no other
options are available.
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Algorithm 4 Pseudocode describing how the next nucleus is selected.
function SELECTNUCLEUS(SelectedNuclei, Messages)

if SelectedNuclei = ∅ then
return arg maxm∈Messages m.fact.interestingness

end if
DiscussedAnalyses← [NAMEOFANALYTICALTOOL(n)|n ∈ SelectedNuclei]
FilteredMessages← [m ∈Messages|NAMEOFANALYTICALTOOL(m) ̸∈ DiscussedAnalyses]
if FilteredMessages = ∅ then

if |DiscussedAnalyses| > 1 then
return null

else
FilteredMessages←Messages

end if
end if
NewNucleus← arg maxm∈F ilteredMessages m.fact.interestingness

Messages.remove(NewNucleus)
return NewNucleus

end function

This formulation allows us to naturally produce both texts discussing a wide variety of different analyses,
as well as focused texts about a single analysis. The behavior is driven by the system input: an input
consisting of the results of multiple analytical tools naturally results in an overview-style text, whereas
an input consisting of the outputs of only a single analytical tool results in an in-depth text.

We note that a thematic flow restriction, like the one used in satellite selection, could also be imple-
mented in the nucleus selection procedure if the flow of the paragraphs turns out to be prohibitively
incoherent. However, based on the observations of White [31] regarding the exchangeable order of the
paragraphs in news reports (to which the reports being produced by the Reporter are similar in style),
we do not expect this to be necessary, nor have we observed a need for such a modification based on
our own experiments.

The planning then continues by selecting satellites for this nuclei, etc., until either a predefined maximum
length, measured in paragraphs, is reached or there are no more sufficiently interesting nuclei to select.
The maximal length is a tuneable hyperparameter which we set to 5 based on experimentation. In case
of the nuclei, we calculate ‘sufficiently’ interesting as follows: the first nucleus of a document is always
sufficiently interesting; the second nucleus is sufficient interesting if the score is at least 10% of the
score of the first nucleus; and further nuclei are sufficiently interesting if they have scores greater than
the score of the first nucleus multiplied by 0.3. In the alternative, any nucleus is sufficiently interesting
if it has an interestingness value of at least 0.5. These values were obtained experimentally, and are
tuneable hyperparameters that may be easily modified.

An evaluation of this document planning approach (in the context of news text generation showed statis-
tically significantly improved performance over a simpler baseline method. The evaluation is described
in more detail in [1], attached to this document as Appendix B.

The evaluated procedure differs slightly from that described above in that the news domain application
contains additional “ancillary” messages that were known to be less related to the main theme of the
document but still potentially inclusion worthy as, for example, points of comparison. The algorithm
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Our method Baseline
Statement Median Mean SD. Median Mean SD. pMWU

Q1 (1–7, ↑) 5 4.40 1.64 2 1.80 0.41 < 0.001*
Q2 (1–7, ↑) 5 4.33 1.76 2 1.60 0.51 < 0.001*
Q3 (1–7, ↓) 4 4.47 1.81 6 5.80 1.42 0.049
Q4 (1–7, ↓) 5 5.13 1.55 6 6.33 0.62 0.024
Q5 (1–5, 3 best) 3 2.93 0.59 4 4.07 0.70 < 0.001*

Table 4: Results obtained during the evaluation. Parentheses indicate answer ranges and whether the
higher (↑), lower (↓) or middle values are to be interpreted as the best. The pMW U column
contains the (uncorrected) p-value of a two-sided Mann-Whitney U test. An asterisk indicates
the p-value is statistically significant also after applying a Bonferroni correction to account for
multiple tests.

inputs were modified so that the messages from this “expanded set” are only available as satellites.
In addition, a “set penalty ” factor is included in satellite scoring, increasingly penalizing the scores of
satellite candidates belonging to the expanded as the distance to the nearest non-ancillary preceding
message increases. The NewsEye procedure described above does not implement these features, as
the NewsEye generation domain does not contain similar “ancillary” messages that would be delegated
to the “expanded set”.

The simpler baseline method, against which the method described above was evaluated, constructs
paragraphs by always greedily selecting maximally important messages without regard for text co-
herence. It does not include the set penalty factor, but the ancillary messages are only available as
satellites. The baseline method does not include any early stopping criteria, and as such always con-
structs the maximal allowed number of maximal length paragraphs provided that a sufficient number of
messages is available.

During the evaluation, domain expert judges were shown texts generated by the general method de-
scribed above (adapted for the news context) and the simpler baseline. After reading each text, the eval-
uators were asked to indicate their agreement with the following statements (translated from Finnish,
the native language of the evaluators):

Q1: The text matches the heading
Q2: The text is coherent
Q3: The text lacks some pertinent information
Q4: The text contains unnecessary information
Q5: The text has a suitable length

For Q1–Q4, the judges indicated their agreement on a 7-point Likert scale ranging from 1 (‘completely
disagree’) to 7 (‘completely agree’). For Q5, the answers were provided on 5-point scale ranging from
1 (‘clearly too short’) to 3 (‘length is suitable’) to 5 (‘clearly too long’). In addition, the judges were able
to provide textual feedback for each individual text, as well as for the evaluation task as a whole. The
judges’ answers to Q1 – Q5, are aggregated in Table 4.

The results indicate that the employed method statistically significantly increases the document’s co-
herence (Q2, mean 4.33 vs. 1.60, median 5 vs 2), the matching of the document’s content to the
document’s theme (Q1, mean 4.40 vs. 1.80, median 5 vs 2), and produces documents of more suitable
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Figure 6: An abridged version of a Document Plan as produced by the Document Planner.

length (Q5, mean 2.93 vs. 4.07, median 3 vs 4, with 3 being best). The proposed method also seems to
result in less unnecessary information being included in the document (Q4, mean 5.13 vs 6.33, median
5 vs 6), and in the text missing less necessary information (Q3, mean 4.47 vs 5.80, median 4 vs 6), but
these effects are not statistically significant after correcting for multiple comparisons with the Bonferroni
correction. The Bonferroni correction changes the threshold value used for deciding whether a result is
statistically significant (usually α = 0.05) by dividing it by the number of tests, n. Here, the new thresh-
old for statistical significance is αbonf = 0.05

5 = 0.01. This addresses the multiple comparison problem
which would result in an increase in false positive results as the number of statistical tests increases.
Notably, as a very simple method of compensation, Bonferroni correction can “overcorrect”, resulting in
an increased amount of false negatives.

The output of the document planning procedure is a tree-structure, detailing the overall structure of the
document: leafs correspond to Facts and the branches from the root node correspond to paragraphs.
An abridged example of a document plan is provided in Figure 6. This document plan then acts as the
input of the next processing phase of the pipeline.

5.3. Templates and Template Selection

As the next step in the NLG process, the language-independent messages need to be transformed to
some type of linguistic constructs. In this version of the system, these language constructs correspond
to individual phrases or short sentence-level templates.

These templates are provided to the system in a custom templating language. Figure 7 provides an
excerpt of this templating language. As can be observed, a template group in our system consists of
three parts:

1. A per-template language identifier such as ‘en’ for English,
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en: {result_key} appeared {result_value} times
en: {result_key} was found {result_value} times
| analysis_type = ExtractBigrams:Count

Figure 7: A hypothetical example of the templating language.

en: {result_key} had a relative count of {result_value}
fi: {result_key, case=gen} suhteellinen osuus oli {result_value}
de: {result_key} hatte eine relative Anzahl von {result_value}
fr: {result_key} ont un taux de comptage relatif de {result_value}
| analysis_type = ExtractBigrams:RelativeCount

Figure 8: An example of multilingual templates. The example also shows how information on grammat-
ical case and other similar factors can be included in the slots.

.

2. a phrase (template) expressed in natural language with slots (indicated by curly brackets {}) that
can be filled with information from the Fact data structures, and

3. conditions for using the templates in the group, such as analysis_type = ExtractBigrams:Count

Moreover, slots in the templates are optionally associated with grammatical cases and other additional
information to instruct components further ‘down’ the pipeline on how to treat them. For example, a
slot containing a numeric value can be augmented with the modifier abs (i.e. {result_value, abs}) to
indicate that the number should be made into an absolute in a further processing stage. This allows us
to, e.g. express a negative numeric change using the phrase ‘decreased by 11.5’, rather than using the
significantly more cumbersome phrasing ‘had a change of -11.5’.

Finally, square brackets in the templates (e.g. [in {corpus}]) can be used to indicate parts of the
phrases that are optional in the sense that the phrase is still meaningful even without them. Templates
with such optional segments are expanded into variants both with and without the optional segment.

The templating language was designed to allow for multilinguality in the system. Multilinguality is sup-
ported by allowing expressions in different languages to be specified within the same template group,
i.e. by adding ‘fi’ or ‘en’ at the beginning of the template as shown in Figure 8. In many cases, adding
new languages to the template group does not require creation or modification of the conditions of the
group. It only requires the translation of the template text, as demonstrated by Figure 8. The aim of
the templating language is that it makes it relatively simple for even non-technical domain experts to
contribute to the creation of templates.

An important observation at this point is that the templates are, fundamentally, each related to a specific
analytical tool. In other words, when a new tool is introduced, we need new associated templates.
And when an analytical tool is removed from the larger system, the templates associated with it are no
longer useful. This mapping between the templates and the analytical tools indicates that the templates
can – and should – be organized on a per-tool basis. To this end, the templates are stored in per-tool
databases (as shown in Figure 4) that are provided to the Reporter together with the per-tool message
generators in joint components called ‘Processor Resources’. These Processor Resources also contain
(some of) the resources needed to lexicalize the templates, as discussed later in Section 5.4.
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To select a suitable template for a given message in the document plan, the system first finds, for each
fact, a template that can be used to express said fact. This is done by evaluating the conditional line
against the messages. In the case that multiple valid templates exist for a certain fact, one is selected
pseudo-randomly. This randomness is pseudo-random in the sense that the random number generator
is re-initialized with a known constant starting position (a ‘seed number’) for every generation task. This
means that every time the system is called with the same set of inputs it produces the same ‘random’
choices. This is useful in that it produces variety into the text for the human reader of the resulting
report, but still makes the process deterministic for most relevant purposes insofar as development is
concerned. This also means that if the same generation task is run multiple times, the same report is
produced down to the minor linguistic choices.

Having identified a suitable pseudorandom template, a copy of found template is then attached to the
tree as a child of each fact’s parent message so that each slot of the template contains a link to the
underlying fact. Individual slots rather than the whole template are associated with the facts, since
the following aggregation phase can result in a single (modified) template containing slots referring to
multiple facts. This phase results in a tree-like structure such as the one shown in Figure 9.

In the case where the system is unable to locate a template that can express a certain fact, the system
simply removes the fact from the document. We note that this behaviour is only a contingency, and we
are not aware of any cases where this would happen in the present version of the system. Finally, the
resulting document plan (with added templates) is provided to the lexicalization component for further
processing.

5.4. Lexicalization

As show in Figure 9, the templates attached and filled by the previous stage of the pipeline still contain
unlexicalized content in the slots of the templates. These unlexicalized segments most commonly come
in the form of references to entities, such as [ENTITY:NEWSPAPER:arbeiter_zeitung] in Figure 9.
These are handled by a Referring Expression Generator component in a future step. In some cases,
however, the values referred to by the slots in the templates are tags, such as [PUB_YEAR:1936] in the
same example.

To this end, the system allows for inclusion of lexical resolvers. In the aforementioned case of the
tag [PUB_YEAR:1936], a specific lexical resolver matches the general format of [PUB_YEAR:X]. It then
extracts the value in place of the X (here, the year), and replaces that value into a token of its own,
replacing the original tag.

These lexical resolvers are not limited to just working with tags, but can be applied to transform any token
into one or more tokens. The resolvers are applied iteratively until the sentences stabilize, meaning
that a lexical resolver’s output can be processed further by another lexical resolver. They thus give a
significant increase in the expressive power of the system. This power, however, comes at the cost of
a significantly more complex syntax – most of the resolvers do their matching via regular expressions –
and are thus not a panacea that would also replace the templates.

A more complex lexicalization challenge is presented by the TopicModelDocumentLinking process,
which effectively produces lists of documents. For example, one of the English language templates

27 of 61



D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

DocumentPlanNode

DocumentPlanNode

Message1

Template

Literal “the”

Literal “search”

Literal “found”

Slot 1536

Literal “articles”

Literal “published”

Literal “during”

Slot [PUB_YEAR:1936]

Fact1

Message2

Template

Literal “the”

Literal “search”

Literal “found”

Slot 1536

Literal “articles”

Slot [ENTITY:NEWSPAPER:arbeiter_zeitung]

Fact2

...

...

Figure 9: A Document Plan after attaching Templates.
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used with this processor is

based on topic modelling, the following similar articles were identified: {result_value}

In the associated message, the result_value field contains an expression of the following format:

[LinkedArticleList:11|21|234|32]

Notably, the amount of |-separated components is not known apriori. For such scenarios, the Reporter
has the ability to parse the |-separated components so that each is realized as a separate component.
The tooling required for this parsing also enables us to easily define what separators are to be used for
the list elements. This allows us to realize

[LinkedArticleList:11|21|234|32]

as, in the case of English,

[LinkedArticle:11], [LinkedArticle:21], [LinkedArticle:234] and [LinkedArticle:32]

By then using another lexical resolver to realize [LinkedArticle:11] as, for example, ‘#11’, we can
produce an expression such as

based on topic modelling, the following similar articles were identified: #11, #21, #234, #32

The above example is slightly simplified, in that the real article identifiers are more complex expressions
such as ‘arbeiter_zeitung_aze19200124_article_79’. While more complex, they also allow for a
basic understanding of what newspaper and from what date the article is from.

The lexicalization process is highly dependent on the details of message generation (rather, the in-
dividual result parsers – see Section 5.1.3). For each slotted value in a template, the lexicalization
process must be able to produce a natural language expression that describes said slotted value. As
the concrete values present in the Facts are decided by the individual result parsers, corresponding
per-analysis logic is needed during lexicalization. These are integrated to the system similarly to the
result parsers, and are show in Figure 4 as the small boxes labeled ‘Lexical Resolvers’. As they are
associated with result parsers, and thus individual analytical tools, they too are included in Processor
Resources.

After lexicalization, the document plan is a tree akin to that shown in Figure 10. This modified document
plan is then passed to the next component in the pipeline.

5.5. Aggregation

In an effort to create richer and more fluent sentences, the Reporter contains an aggregation component
that can be used to combine individual phrases to more complex phrases that contain less duplicate
information. Aggregation is a notoriously complex and delicate process and contains significant danger
for misleading the reader. Our simple aggregation component aggregates two consecutive templates
if they contain a common prefix of one or more tokens. In such cases, the shared prefix in the latter
phrase is replaced by a conjunction such as ‘and’ in English.
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Figure 10: Part of a Document Plan after Lexicalization.
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For example, using a natural language example, consider the phrases “The stem pair "president
harding" appeared 7 times” and “The stem pair "president harding" had a relative count of 0.0293”.
Here, we indicate a shared prefix in bold. Intuitively, these phrases can be aggregated to “The stem
pair "president harding" appeared 7 times and had a relative count of 0.0293”. While the result
shown in this specific example could be achieved by considering the words of the phrases only, that
method has two significant issues.

The first issue is the aggregation of numbers as part of the shared prefix. For example, we wish to
explicitly disallow aggregation of “The stem pair "president harding" appeared 7 times in 1915” and
“The stem pair "president harding" appeared 7 times in 1914” as “The stem pair "president harding"
appeared 7 times in 1915 and 1914” which could be interpreted as meaning that the phrase appeared
a total of 7 in 1915 and 1914 together. That is, that the phrase appeared, for example, 3 times in 1914
and 4 times in 1915. As such, to avoid misleading the reader, we conduct aggregation so that the
shared prefix can not include slots referencing result_value fields, even if the contents of those fields
are identical. The resulting aggregation would thus be “The stem pair "president harding" appeared 7
times in 1915 and 7 times in 1914.” While longer, this sentence is not ambiguous in the same way as
the problematic aggregation above.

Another problem is presented by cases wherein the aggregator identifies a part of a larger phrase as
belonging to the shared prefix. We chiefly observed this as occurring as aggregation of phrases such as
“the most positive value was 15” and “the most negative value was -1” as “the most positive value was
15 and negative value was -1”. Here, the resulting aggregated phrase is ungrammatical. To address
this problem, we further limit the aggregation so that the aggregator only considers a shared prefix to
the point wherein the last element of a shared prefix is some slot.

As a special case, we allow prefixes where the prefix itself contains no slot, but both component sen-
tences immediately follow the prefix with a result_value field. This rule is used, for example, to aggre-
gate the phrases “the search found 1536 articles published during 1936” and “the search found 1536
articles published in ‘Arbeiter Zeitung’”. as “the search found 1536 artiches published during 1936 and
1536 articles published in ‘Arbeiter Zeitung’”. Here, the bolded parts are Literals, but aggregation is
allowed as the joint prefix is followed in both source sentences by a result_value field, realized in the
sentences as ‘1536’ in both cases.

The resulting aggregation system is not perfect, but we believe it strikes a suitable balance between
level of aggregation, technical complexity and requirement for per-template metadata. Furthermore,
due to the pipeline nature of the Reporter, the Aggregator can be trivially disabled if the approach is
later identified as being unsuitable. In that case, the resulting texts will be longer and contain more
repetition, but will also be more clear on the level of individual sentences.

The result of the aggregation phase is, again, a modified document plan such as the one shown in
Figure 11. This plan is then passed to the next component in the pipeline.

5.6. Referring Expression Generation

Following aggregation, the document plan still contains some unlexicalized content in form of references
to entities such as newspapers, languages and dates. These are lexicalized as part of the Referring
Expression Generation process. This process is distinct from the lexicalization process in two ways:
first, lexicalizing a newspaper’s name or the name of a month is not related to a specific analysis,
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Figure 11: Part of a Document Plan after aggregation.

meaning that this step should not be aligned to any specific Processor Resource in the same way as
the Lexicalization resources were. Second, in some cases we might wish to replace e.g. the name
of a newspaper with the word ‘it’, provided that the surrounding sentence makes it clear what is being
referred to.

During this step, for example, the tag ‘[ENTITY:NEWSPAPER:arbeiter_zeitung]’ would get replaced
with the phrase ‘Arbeiter Zeitung’, and the tag ‘[TIME:between_years:1915:1916]’ would be realized
as ‘between 1915 and 1916’. In improving this component of the pipeline from the previous iteration, we
observed that the date realization code was both relatively complex and separable from the code used
to realize references to entities. As such, we separated these two parts into distinct modules, as shown
in Figure 4.

The Referring Expression Generation module, at the present, produces referring expressions for lan-
guages, newspapers and general entities (e.g. locations and people). The module is equipped to use
shorter expressions, such as ‘it’, in place of the full expressions (e.g. ‘Arbeiter Zeitung’), but our initial
trials indicated that such a feature was not improving the quality of the text significantly, but occasionally
caused confusing and unclear referential structures. As such, we decided to not enable this feature.
A less-complex, but conceptually similar, feature used in date reference generation allows the use of
expressions such as ‘the same year’ in place of year numbers, but such expressions seldom used.

The output of the Referring Expression Generation module is, finally, the fully lexicalized document plan
as shown in Figure 12. This plan, however, still needs additional post-processing and is thus passed on
to the next component.

32 of 61



D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

DocumentPlanNode

DocumentPlanNode

Message1

Fact1

Template

Literal “the”

Literal “search”

Literal “found”

Slot 1536

Literal “articles”

Literal “in”

Slot “German”

Literal “and”

Slot 1536

Literal “articles”

Literal “published”

Literal “in”

Slot “the newspaper Arbeiter Zeitung”

Fact2...

...

Figure 12: An abridged version of a Document Plan after Referring Expression Generation.

5.7. Morphological Realization

While the English language running example we have been using is very close to correct language,
the processing pipeline is not yet complete. Especially in cases of more complex morphology, certain
words in the document plan still need to be inflected into their right morphological forms. In English, this
is relatively straightforward. However, in other languages such as Finnish, the morphological realization
process is significantly more complex.

During morphological realization, each token of the document plan is inspected individually. If it contains
morphological information, such as a ‘case’ attribute, the token and the case are handed to a language
specific morphological realizer (shown in Figure 4) which correctly inflects the token.

As the morphological realization process is extremely complex for languages such as Finnish, we use
3rd party libraries for this task. At the present, we have implemented realization systems for both
English and Finnish using the UralicNLP library [32]. We have not found it necessary to include 3rd
party morphological realization libraries for the French and German languages, but the design of the
systems allows them to be added easily if they become necessary in the future. The English module is
also, in reality, redundant in that none of the templates require its use.

5.8. Realization into HTML

Finally, the document plan, which has been modified by all the previous components, is given to the
surface realizer to be realized into a format that can be displayed to the end user. As seen in Figure 12,
the document plan at the onset of surface realization is in a state where natural language expressions
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The search found 147610 articles in Finnish and 147610 articles from the
newspaper Uusi suometar. The search found 9570 articles published during
1913 and 9114 articles published during 1916. The search found 8943 articles
published during 1914.

Between 1869 and 1918, the largest yearly amount of relevant articles in Uusi
suometar was 9570 and smallest non-zero yearly amount of relevant articles
in Uusi suometar was 116. Between 1869 and 1918, the average amount
of relevant articles in Uusi suometar was 2952.2. 116 relevant articles were
found in issues of Uusi suometar published during the year 1869. 225 relevant
articles were found in issues of Uusi suometar published during the year 1870.

The most prominent entities in the corpus were: Helsinki (salience = 0.73,
stance = 2.0743014789769545e-05), Helsinki Airport (salience = 0.024,
stance = 0) and Hanko railway station (salience = 0.011, stance = 0).

Tallinn was discussed during 17 distinct years between 1889 and 1918. The
mean sentiments towards Tallinn between 1889 and 1918 was 0.059. The
most negative sentiment towards Tallinn (0) occurred at 1889. The most pos-
itive sentiment towards Tallinn (1) occurred at 1894. Helsinki was discussed
during 59 distinct years between 1852 and 1918

Figure 13: Two excerpts from reports produced by the Reporter.

can be formed by traversing the leaves of the tree. The higher-in-the-tree nodes of the document plan
are used to distinguish limits of paragraph.

The surface realizer also adds typographical details such as capitalizing the first word of each sentence,
adding sentence-final punctuation and removing extranous whitespace that sometimes remains in the
text as an artefact of the previous generation stages.

The final stage of the surface realization is the production of a flat text representation which incorporates
any necessary Hypertext Markup Language (HTML) tags. Currently, the Reporter can produce three
types of different HTML structures: text paragraphs such as found in standard text documents, list
structures where the individual sentences are presented as bullet points and enumerated lists.

Excerpts from the resulting texts are shown in Figure 13.

5.9. Link Generation

The reports produced by the Reporter are in almost all cases ‘highlights’ of some larger, underlying,
analytical result. For example, while the natural language results might only describe the yearly article
counts for the three – most interesting in the view of the Investigator – years, the underlying data
contains the same information for all the years present in the dataset being analysed. As such, it is
useful to be able to link from the textual descriptions to either a non-linguistic representation of the
underlying analytical results, or perhaps another report that discusses said result in more detail.
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While the Reporter is unable to construct such links directly, as it is agnostic to the user interface
being used to display the result, it provides the necessary information to conduct this linking in the user
interface as a post-processing step. This is achieved by embedding in every template a special tag of
the form [LINK:210811b4-42fa-499e-931e-3d89906a51b6]. Here, the post-colon section of the tag is
a UUID uniquely identifying what analysis the information presented in the sentence originates from.
Similar links are also generated to point to articles discussed in the reports. These tags can be easily
parsed in the UI to form suitable links to the larger results of the relevant analysis.

As such links are not always useful, the Reporter’s API (see Section 7) allows an optional links flag
to be included in the report generation requests. While the links are always generated (for simplicity of
the generation process), both omitting the flag and setting it to false result in a post-processing step
removing them from the reports. The decision to treat the omission of the flag as a negative value was
based on a need to keep the API backwards compatible with the original API.

6. Header Generation and Multi-part reports

The Reporter also generates a header or a title for each document it produces. The generation of the
title uses the same method as described above with three modifications. The first of these is that the
document plan is limited to a single fact. This ensures that the resulting document can only contain a
single template.

Second, the template selection is conducted from among a separate group of header templates that de-
scribe the corpus field of the selected message. These are provided as a separate module comprising
the header templates and their lexical resolvers. The message generation is handled by the standard
result parsers. The header might be, for example, ‘Analysis of the dataset ‘myDataset’ filtered by the
query “femme” ’.

Finally, the surface realizer wraps the ‘document’ (i.e. the single sentence) in the <h1></h1> HTML tags
that indicate the text is a header.

As might be inferred from the above description of the header generation, the Reporter pipeline as-
sumes that all the results discussed under a single heading discuss a single dataset. The Reporter
makes no attempt to describe in the individual sentences and paragraphs which dataset they are de-
scribing. At the same time, more complex investigations by the Investigator provide results about multi-
ple, slightly different datasets as well as results that compare datasets to each other.

In such cases, the Reporter splits the input into multiple generation tasks so that each task is about a
specific, individual, dataset. These reports – and their headlines, generated as described above – are
then concatenated together into one larger document. The headers thus turn into section headers, with
the header describing the dataset that is discussed in each section.

This process can naturally lead to an unwieldy amount of ‘sub-reports’ in cases where the inputs con-
tains information about a very large amount of corpora. To prevent excessively long reports, the reporter
seeks to determine both the most salient sub-reports to include in the larger report, as well as a suitable
ordering for the sub-reports.
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As a proxy for sub-report salience, the Reporter uses the maximal interestingness of any of the individ-
ual messages in a sub-report. An alternative approach would be, e.g. the mean interestingness, but
this would penalize sub-reports that contain one or two highly interesting facts together with a plethora
of medium-to-low interestingness facts. Using this salience proxy, the top-5 most salient sub-reports
are selected for inclusion in the final report.

This final report is then constructed so that the sub-reports appear in a decreasing order of salience,
but with sub-reports discussing the same dataset grouped together. That is, if both the most and least
salient sub-report (that make the top-5 cut) are about the same dataset, the least salient sub-report
is lifted so that it immediately follows the most salient sub-report. This prevents behaviour where the
overall report starts by discussing some specific dataset, then changes topic to another dataset, and
finally returns to the original dataset.

7. Integration with the Personal Research Assistant

The Reporter is integrated to the other NewsEye components in two ways. First, it communicates with
the Controller of the Personal Research Assistant, and through it, the Investigator. Second, the Reporter
contains functionalities that enable it to report on the results of each individual analytical tool used by
the Investigator.

7.1. Integration with Assistant Control

We have described in Section 2 the relation of the NewsEye Reporter (i.e. the system described in this
Document) to the rest of the NewsEye Personal Research Assistant (Work Package 5), the NewsEye
User Interface (Work Package 7) and other components produced by Work Packages 3 and 4 in broad
terms. In practice, to enable the Assistant Controller to start a generation task, the Reporter offers a
simple Application Programming Interface (API) with four endpoints.

The first endpoint, /api/languages, simply reports the languages supported by the Reporter. This en-
ables the technical users (such as the NewsEye User Interface) to dynamically display a list of available
reporting languages to the end user. The second endpoint, /api/formats, returns the set of valid body
formatting options. The third endpoint, /api/report is used to generate new reports based on the anal-
ysis provided as a parameter. The /api/report endpoint expects the input to be encoded in form data
format. As this is not always simple, we also provide an alternative, fourth, endpoint /api/report/json
that provides the same service as the /api/report endpoint, but expects the input to be provided as
a JSON document. All API endpoints produce responses in the industry standard format, JSON. The
Reporter’s API is described in detail, with example responses, in Appendix A.

7.2. Integration with Individual Analytical Tools

While the Reporter is not directly connected to the individual tools used by the Investigator, it neverthe-
less needs some tailoring for each such tool. Without this tailoring, the Reporter cannot know how to
report on the analytical results provided by the tools. As described in various parts of Section 5, this
tailoring needs to occur on three different levels: message generation, templates and lexicalization.
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First, the message generator (see Section 5.1.3) needs to be tailored for each type of analytical results
so that the results can be correctly translated to the fact data structures (see Section 5.1.1). This
tailoring is provided in the format of Python 3 code implementing the relevant result parsers.

Second, it must be ensured that each type of analytical result has a set of templates (see Section 5.3)
that allow them to be expressed in natural language. These templates need to be provided in the
templating language employed by the Reporter.

Third, the lexicalization component (see Section 5.4) must be tailored by providing any needed lexical
resolvers, so that all concepts embedded into the templates can be expressed in natural language. Like
the message generator tailoring, this tailoring is also provided as Python 3 code.

All three elements are provided to the Reporter as a single Python 3 module, the entry point to which
is a class that implements a pre-specified interface. This class provides access to the templates (as
a multiline string), the result parser (as a callable method with a specified signature) and to the lexical
resolvers (as another list of Python 3 classes that all implement a specified interface). This is denoted as
the Processor Resource box in Figure 4. The resource is then integrated into the rest of the Reporter
in a very simple manner, requiring only two lines of code.

8. Summarization

Text Summarization (TS) aims to create a summary containing the main ideas of a textual document.
TS systems can be extractive, compressive or abstractive. Extractive methods estimate the relevance
of sentences in a document to generate a summary by concatenating the most relevant sentences.
Compressive methods compress sentences to reduce the length of sentences and to preserve only
the main information. Then, they generate summaries by concatenating the most relevant sentences
and compressions of a document. Finally, abstractive methods analyze a document and generate a
summary with new sentences that contain the meaning of the source documents [33].

Many of the state-of-the-art methods for TS are of the extractive class. Recent systems have used com-
pressive and abstractive approaches [34] to improve the informativeness and the grammatical quality of
summaries. However, these approaches require specific resources for each language or external data
and combination of different methods that limit the adaptability of these methods to generate summaries
into other languages. Recently, transformer architectures have reached the state of the art in several
downstream NLP tasks by pre-forming models on large generic corpora and then adapting them to
specific tasks with high performance.

We have therefore focused on two extractive TS approaches that generate stable results and can be
easily adapted to any language and two transformer-based systems for English documents. More
precisely, we describe two well known state-of-the-art TS systems (TextRank [35] and MMR [36]), and
an extractive and abstractive systems based on the transformer architecture.

8.1. Text summarization systems

TextRank is a graph-based approach that was originally devised to estimate the relevance of pages
from the number of citations or the study of the Web structure [35]. This approach makes decisions
about the importance of a vertex based on the global information coming from the recursive analysis
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of the complete graph. In the scope of automatic summarization, it is observed that the document is
represented by a graph of textual units (sentences) connected through relations resulting from similarity
calculations. The sentences are then selected according to the criteria of centrality or prestige in the
graph where each sentence in represented for a vertex Vi, and grouped to produce extracts of the text.

S(Vi) = (1− d) + d×
∑

j∈In(Vi)

S(Vj)
|Out(Vj)| (2)

where Vi is a vertex of the graph, In(Vi) are the incoming links to the vertex Vi, Out(Vi) are the outgoing
links to the vertex Vi, d is a damping factor that can be set between 0 and 1, which has the role of
integrating into the model the probability of jumping from given vertex to another random vertex in the
graph. Finally, S(Vi) is the summarization score of Vi. All S(Vi) are randomly initialized and updated
until convergence.

Maximal Marginal Relevance (MMR) approach produces a summary based on the relevance and the
redundancy of the sentences [36]. It strives to reduce redundancy while maintaining query relevance
in re-ranking retrieved documents and in selecting appropriate passages for text summarization. They
use a linear combination to measure the relevance and novelty independently:

MMR = arg max
s∈D\S

[λ× sim1(S + s, D)− (1− λ)× sim2(S, D)] (3)

where S is the summary, D is the document, s is the analysed sentence to be added to the summary
S, D\S is the set difference, and the functions sim1 and sim2 are similarity measures. We follow the
standard strategy that consist to initialize S to ∅ and calculated the similarity measures as the cosine of
the TF-IDF representations.

Finally, we analyse two BERT-based systems. The first one uses the BERT model for text embeddings
and K-Means clustering to identify sentences closest to the centroid for summary selection [37]. This
approach generates summaries by extracting the sentences that have the most similar content to the
main topic of the document. The second method produces abstractive summaries by using the BART
model to analyse documents and generate summaries [38]. The BART model was finetuned on CNN-
DailyMail dataset that contains over 280,000 document-summaries pairs.

8.2. Datasets

We performed the tests using the MultiLing Pilot 2011 dataset [39]. This dataset contains documents of
news topics taken from the WikiNews1 website in several language versions. These documents mainly
focus on news which may be described or happen in different moments in time. Each language version
is composed of 10 topics, each topic having 10 source texts and 3 reference summaries. Each reference
summary contains a maximum of 250 words. Specifically, we used the English and French language
versions to evaluate our baselines.

1https://www.wikinews.org/
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8.3. Automatic evaluation

TS approaches are evaluated based on the informativeness of their summaries. As references are
assumed to contain the key information, we calculated informativeness scores counting the word n-
grams in common between the system output and the reference summaries. The ROUGE measure
developed by Lin [40] compares the differences between the distribution of words of the candidate
summary and a set of reference summaries. The comparison is made splitting into n-grams both the
candidate and the reference to calculate their intersection. Standard n-gram values for ROUGE are
1-gram and 2-gram, both expressed as:

ROUGE− n =
∑

Sumref ∈S
∑

n−gram∈Sumref
CountSumcan

(n− gram)∑
Sumref ∈S

∑
n−grams∈Sumref

CountSumref
(n− gram) , (4)

where n is the n-gram order, S is the set of all reference summaries, Sumcan the candidate summary,
Sumref the reference summary, and CountSumx

(n−gram) is the number of occurrences of the n−gram

in the reference summary (when x = ref ) or in the candidate summary (when x = can). A third common
ROUGE-n variation is ROUGE-SUγ. This ROUGE-n variation takes into account skip units (SU) ≤ γ

allowing some arbitrary gaps but in a controlled fashion. For each ROUGE measure, we analyse the
precision (P), recall (R) and F-measure (F1).

8.4. Experimental setup

All systems concatenate all documents of a topic and analyse them as a single document. Then, they
generate summaries composed of 250 words with the most relevant sentences, while the redundant
sentences are discarded. We then apply the cosine similarity as defined in Equation 5.

cossim(si, sj) = < si, sj >

|si| ∗ |sj |
(5)

where sx is the vector representation of the sentence sx and < ·, · > is the dot product operation. A
threshold of 0.52 was set to remove redundant sentences in the extractive summary generation. We
used the python library BERT-EXTRACTIVE-SUMMARIZER3 and the HuggingFace library4 for extractive
and abstractive Transformer summaries, respectively.

As we have only found pre-trained models for the summarization of English documents, we only used
the transformer-based systems on the English dataset.

8.5. Experimental evaluation

The results of the automatic evaluation using the MultiLing Pilot 2011 datasets are described in Ta-
bles 5 and 6. For both languages, TextRank outperformed MMR and transformer-based systems for all
ROUGE measures. Indeed, TextRank analyses how the similarity between sentences in all documents
impacts in the informativeness of the documents. This strategy enables it to identify which sentences
contains the main information and selects these sentences to generate the summary.

2This value was empirically chosen.
3https://pypi.org/project/bert-extractive-summarizer/
4https://github.com/huggingface/transformers
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MMR generates a summary based on the analysis of novelty and redundancy of sentences. However,
this method does not take into account the impact of the information contained in one sentence on the
overall information contained in all documents, which limited the quality of its summaries.

Although transformer-based models generate a more in-depth analysis than the two baselines, they did
not achieve the best results. One reason may be the limited input size for transformer-based models,
which is limited to 1024 tokens in the original architecture [37]. This limitation reduces the amount of
content that is analyzed by the model and, as a result, causes the generation of poor summaries.

ROUGE-1 ROUGE-2 ROUGE-SU
P R F1 P R F1 P R F1

MMR 0.4521 0.4517 0.4519 0.1345 0.1342 0.1343 0.1937 0.1934 0.1935
TextRank 0.4851 0.4769 0.4809 0.1565 0.1538 0.1551 0.2118 0.2049 0.2082
Transf.-ext. 0.4134 0.4093 0.4113 0.1071 0.1059 0.1065 0.1574 0.1542 0.1557
Transf.-abst. 0.3059 0.4378 0.3600 0.0739 0.1056 0.0869 0.0903 0.1837 0.1209

Table 5: ROUGE results for the English version of the MultiLing Pilot 2011 dataset.

ROUGE-1 ROUGE-2 ROUGE-SU
P R F1 P R F1 P R F1

MMR 0.4691 0.4722 0.4705 0.1535 0.1548 0.1541 0.2151 0.2184 0.2164
TextRank 0.4874 0.4861 0.4866 0.1610 0.1600 0.1604 0.2250 0.2230 0.2239

Table 6: ROUGE results for the French version of the MultiLing Pilot 2011 dataset.

8.6. Integration to Reporter

As the design philosophy of the Reporter (and the NewsEye Personal Research Assistant as a whole)
does not allow for a summarization module to be embedded into the Reporter, we instead chose to
implement the summarization aspect of report generation as an additional processor employed by the
Investigator as part of it’s experimentation with a dataset. The summarization processor is then in-
tegrated to the Reporter as any other processor, with a processor resource consisting of a template
database, a result parser and relevant lexical realizers.

This method of integration also has the benefit of enabling future developments to modify the summa-
rization component (either by fine-tuning or completely replacing it) without necessitating any changes
in to the Reporter.

9. Evaluation

In evaluating the Reporter, we must consider two distinct aspects. The first of these is how well the
Reporter matches the needs of its users. A technically marvelous system, while academically interest-
ing, should not be considered a success if it was completely useless to its purported users. On the
other hand, we must also evaluate the system in terms of whether it accomplishes its non-user-centric
design goals, such as requirements for extensibility. We will consider these aspects starting from the
non-user-centric design goals identified in Section 4. This will be followed by an evaluation of the fitness
for purpose based on user testing sessions conducted with digital humanities domain experts.
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9.1. Technical evaluation

As identified in Section 4, a fundamental requirement of the Reporter is that its output should always
be correct in relation to the results identified by the Investigator.5 By implementing the Reporter as a
modular rule-based pipeline architecture, we avoid the hallucination issue commonly observed in neural
NLG systems. Hallucination refers to the NLG system producing imaginary output rather than sticking
to the given facts only.

While quantifying the ‘correctness’ of an NLG system is difficult – only in the last year have we seen
the first academic works attempting to formalize methods for evaluating accuracy in texts that are not
extremely short [41] – we are not aware of any cases wherein the Reporter produces output not consis-
tent with the system input. Any Reporter-caused problems identified in previous versions of the system
(e.g. misleading output due to aggregation, as discussed in Section 5.5) have been addressed. Fur-
thermore, the rule-based modular nature of the Reporter allows for surgical corrections to address any
hypothetical correctness issues if identified later-on. As such, we believe that the Reporter fulfills its
design goals with regard to correctness.

The second requirement identified in Section 4 is extensibility. Optimally, the Reporter should be easily
extensible with regard to both new languages and new analytical tools. With regard to extensibility of
analytical tools, the reporter was constructed in an iterative manner: the analysis-specific Processor
Resources were implemented and introduced to the system one-by-one. Thus, the process of creating
the Reporter, itself, was a simulation of how feasible it is to extend the system with new analyses. Dur-
ing such an extension, time was principally spent on two tasks: understanding the input payloads on
the level required to parse it into meaningful messages and in sourcing templates and lexical resolvers
for all the system languages. In the case of the latter, we found it sufficient to construct full natural lan-
guage example sentences that were then translated by domain experts that speak the target language.
By a well-designed selection of the example sentences and their partial overlaps, it was possible for
technical staff who did not speak the languages themselves to construct both the templates and the
lexical resolvers. Naturally, this process is significantly simplified wherein the technical staff is directly
able to contribute the templates and the lexical resolvers. In general, we believe that the Reporter fulfills
the requirement for analytical extensibility very well.

With regard to extensiblity to new languages, we similarly simulated the extension process as part
of the system construction: the Reporter was first implemented in English and Finnish, and support
for both German and French was added only at the end of the development effort. Based on our
experience, extending the system to a completely new language is the simplest when the language
is morphologically simple and the extensions is done by a native speaker of the language. In case of
morphologically complex languages, an increased amount of developer time is needed to implement the
relevant morphological realizer. For morphologically simple languages, such as English, such a realizer
might not even be needed. When the system is being extended to a language not spoken natively by
the people in charge of the extension, further time is also needed to source the necessary translations
from domain expert native speakers of the new language. Based on our experiences in extending the
initial system from English to first Finnish and then German and French, we believe the system is easily

5This requirement’s importance is exemplified by the feedback of internal domain expert testers, who observed that due to a
programming fault the Reporter was referring to topics from a topic model with numbers that were off by one, i.e., topic #5 was
called ‘topic #4’. While they were able to identify and thus mentally adjust for the problem, it made the testers suspicious of all
the other information contained in the results.
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extensible at least within the scope of the majority European languages. As such, we believe the overall
extensibility of the system – with regard to both languages and analyses – is good.

In terms of system explanability – the third requirement identified in Section 4 – our use of rule-based
processing has resulted in a system that can be inspected in detail to precisely identify why the system
took any specific action. At no stage does the system employ methods such as neural networks that
would introduce black-box processes that would prohibit inspection or introspection. This has been
demonstrated by our ability to identify and surgically correct the causes of problems identified by domain
expert testers. As such, we believe this requirement is well fulfilled by the Reporter.

The final requirement identified in Section 4 is multilinguality, namely a requirement that the system
be able to produce text in multiple languages. We believe the ability of the system to produce text in
four different languages is by itself sufficient evidence to show that this requirement is well covered.
By including Finnish as one of the languages supported by the system, we also demonstrate that the
multilinguality is not only restricted to Indo-European languages. At the same time, while we are not
aware of any examples, we cannot overrule the possibility that some of the fundamental assumptions
behind the system’s design were incompatible with some other language we are not familiar with. In any
case, we conclude that the system is at the minimum highly multilingual within the sphere of European
languages.

9.2. User-centric evaluation

While the above technical considerations are important, they are fundamentally secondary to the fitness
of the Reporter for its intended audience’s needs: no matter how correct, extensible, explainable and
multilingual the Reporter is, it can only be viewed as a success if it is useful to the historians it is intended
to be used by. In our view, this fitness for purpose has two primary aspects. First, the information
presented in the reports must be both relevant to the user and presented using structures that make it
easy to understand and parse. Second, the system must produce text that is sufficiently high quality (in
terms of e.g. grammar) to be understood.

With regard to the information content of the output, the relevance of the results is not in the purview
of the Reporter, but of the Investigator that determines the relative importance values of the various
data points. At the same time, the ordering of the information within the reports is explicitly the domain
of the Reporter. Following iterative changes to remove extreme cases of excessive information being
included in the reports produced by intermediate versions of the Reporter, we are not aware of any major
problems in selecting or structuring the contents of the reports. Wherein the feedback has pointed out
any specific problems (most noticeably with long list-like paragraphs), we have modified the relevant
templates and realizers to improve the quality of the output to address the comments. In general, we
believe that the structuring of the reports is of at least acceptable quality and balances well the quality
of the output with the other requirements imposed on the system.

To evaluate the linguistic quality of the output, feedback was sourced from the the internal domain expert
testers using intermediate versions of the system. In general, the experts testers found the language
of the system stilted but understandable, indicating that the linguistic quality of the system output is at
least acceptable. These sentiments were We will continue to elicit and address feedback on this factor
to the end of the project.
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An as of yet unsolved problem is tailoring the system output to individual users’ knowledge of the tools
being employed. Some users would benefit from longer descriptions explaining in detail what terms such
as ‘Jensen–Shannon divergence’ mean, and how the results should be interpreted, while including that
information would be completely superfluous to others. In the present version of the Reporter, we have
attempted to overcome the tailoring problem by including tooltips that describe several terms when the
terms are moused over in the text. The tooltips give brief definitions and some instructions on how to
interpret values, such as what the range of a metric is and how the extrema are to be interpreted. While
this does not completely remove the problem (as even the tooltip contents might benefit from tailoring),
we believe it alleviates it.

Based on the above consideration, we believe the Reporter shows good fitness for its intended purpose.
At the same time, the feedback received indicates that further improvements could be made to the
system.

In the broader natural language generation literature, NLG systems are most commonly evaluated using
automated metrics that compare the output of the NLG system to some known human-produced gold
standard text for a known system input. Such comparisons are conducted using any of a plethora of
evaluation metrics that attempt to address the inherent difficulty of determining the similarity of two
human texts: small word-level choices (e.g. introducing a negation, changing a verb for an antonym,
etc.) can have immense changes for the meaning of the text, while simultaneously sentences can often
be rephrased almost completely (changing the bulk of the individual words) without affecting the overall
meaning. While a plethora of metrics have been proposed to complete this difficult task, it has been
observed that these metrics should be used with caution and their limitations acknowledged [21]. As
the Reporter is a novel system addressing a novel research need, we lack a gold-standard corpus of
system outputs that would be needed to conduct automated metric-based evaluation of the Reporter.
Simultaneously creating such a corpus would be prohibitively expensive and resource intensive, as the
creation effort would need to be conducted by domain experts who would need to, in the worst case,
comb through the thousands of data points provided to the Reporter as its input to produce even a single
gold-standard output. For every input, a large amount of such gold-standard texts would be needed, as
a fundamental assumption of the automated evaluation metrics is that the gold standard texts cover the
whole space of acceptable outputs. As such, we interpret that automated evaluation of the Reporter is
fundamentally untenable at this point. However, as human evaluations are commonly viewed as more
reliable than automated evaluations in NLG literature [42], we believe this does not reduce the credibility
of our analysis above.

10. Conclusions

In this Deliverable we have described the finalized version of the NewsEye Personal Research Assis-
tant’s Reporter component, and how it relates to the rest of the NewsEye project and especially the
other components of the Personal Research Assistant. The Reporter follows a modularized pipeline ar-
chitecture for data-to-text NLG, which allows for guarantees regarding output correctness, extensibility,
explainability and multilinguality.

We believe the Reporter’s architecture is sound and presents a highly suitable report generation ap-
proach given the state of the art in NLG, the requirements of the NewsEye context, and the limitations
imposed by lack of suitable training data for any machine learning based NLG methods. While the out-
put of the Reporter is relatively stiff and formulaic, it strikes a balance between being able to adapt to
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the various experiments conducted by the Investigator and any changes in the available analytical tools
while ensuring that the produced texts are truthful to the underlying data. While some other methods of
NLG might have resulted in more fluent textual output, we believe that the risk of misleading that would
have risen from the use of those methods would have been unacceptable given the context in which the
Reporter is used.

Overall, we believe that the Reporter component is a successful application of NLG techniques to an
extremely challenging domain and application context. This is not to say that future improvements are
not possible. However, the extensible and modular nature of the Reporter makes any such changes
relatively easy to implement as they are identified. Finally, the modular nature allows future efforts
to integrate machine learning based NLG methods into the Reporter pipeline as those technologies
mature.
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[23] Ondřej Dušek, David M Howcroft, and Verena Rieser. “Semantic Noise Matters for Neural Natural
Language Generation”. In: Proceedings of the 12th International Conference on Natural Language
Generation. 2019, pp. 421–426.

[24] Ratish Puduppully, Li Dong, and Mirella Lapata. “Data-to-text generation with content selection
and planning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019,
pp. 6908–6915.

[25] Ratish Puduppully and Mirella Lapata. “Data-to-text Generation with Macro Planning”. In: arXiv
preprint arXiv:2102.02723 (2021).

[26] Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer. “Neural
data-to-text generation: A comparison between pipeline and end-to-end architectures”. In: arXiv
preprint arXiv:1908.09022 (2019).

[27] Leo Leppänen, Myriam Munezero, Mark Granroth-Wilding, and Hannu Toivonen. “Data-Driven
News Generation for Automated Journalism”. In: Proceedings of the 10th International Confer-
ence on Natural Language Generation. 2017, pp. 188–197.

[28] IETF RFC 8259 / STD 90. The JavaScript Object Notation (JSON) Data Interchange Format.
Standard. Internet Engineering Task Force, Dec. 2017.

[29] ISO/IEC 21778:2017(E). Information technology – The JSON data interchange syntax. Standard.
The International Organization for Standardization & the International Electrotechnical Commis-
sion, Nov. 2017.

[30] William C Mann and Sandra A Thompson. “Rhetorical structure theory: Toward a functional the-
ory of text organization”. In: Text-Interdisciplinary Journal for the Study of Discourse 8.3 (1988),
pp. 243–281.

[31] Peter White. “Narrative impulse in mass-media ‘hard news’ reporting”. In: Genre and institutions:
Social processes in the workplace and school (2005), pp. 101–123.

[32] Mika Hämäläinen. “UralicNLP: An NLP Library for Uralic Languages”. In: Journal of Open Source
Software 4.37 (2019), p. 1345. DOI: 10.21105/joss.01345.

[33] Elvys Linhares Pontes. “Compressive Cross-Language Text Summarization”. Theses. Université
d’Avignon, Nov. 2018. URL: https://hal.archives-ouvertes.fr/tel-02003886.

46 of 61

https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://doi.org/10.21105/joss.01345
https://hal.archives-ouvertes.fr/tel-02003886


D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

[34] Yang Liu and Mirella Lapata. “Hierarchical Transformers for Multi-Document Summarization”. In:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Flo-
rence, Italy: Association for Computational Linguistics, July 2019, pp. 5070–5081. DOI: 10.18653/
v1/P19-1500. URL: https://www.aclweb.org/anthology/P19-1500.

[35] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Texts”. In: Proceedings of EMNLP
2004. Ed. by Dekang Lin and Dekai Wu. Barcelona, Spain: Association for Computational Lin-
guistics, July 2004, pp. 404–411. URL: http://www.aclweb.org/anthology/W04-3252.

[36] Jaime Carbonell and Jade Goldstein. “The Use of MMR, Diversity-based Reranking for Reorder-
ing Documents and Producing Summaries”. In: SIGIR. 1998, pp. 335–336.

[37] Derek Miller. Leveraging BERT for Extractive Text Summarization on Lectures. 2019. arXiv: 1906.
04165 [cs.CL].

[38] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. “Transformers: State-of-the-Art Nat-
ural Language Processing”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. URL: https://www.aclweb.org/anthology/2020.emnlp-
demos.6.

[39] George Giannakopoulos, Mahmoud El-Haj, Benoit Favre, Marina Litvak, Josef Steinberger, and
Vasudeva Varma. “TAC2011 MultiLing Pilot Overview”. In: Proceedings of the Fourth Text Analysis
Conference, TAC 2011, Gaithersburg, Maryland, USA, November 14-15, 2011. 2011. URL: http:
//www.nist.gov/tac/publications/2011/additional.papers/Summarization2011%5C_
MultiLing%5C_overview.proceedings.pdf.

[40] Chin-Yew Lin. “ROUGE: a Package for Automatic Evaluation of Summaries”. In: Proceedings of
the Workshop on Text Summarization Branches Out (WAS 2004). 2004, pp. 74–81.

[41] Craig Thomson and Ehud Reiter. “A Gold Standard Methodology for Evaluating Accuracy in Data-
To-Text Systems”. In: Proceedings of the 13th International Conference on Natural Language
Generation. 2020, pp. 158–168.

[42] David M Howcroft, Anja Belz, Miruna-Adriana Clinciu, Dimitra Gkatzia, Sadid A Hasan, Saad Ma-
hamood, Simon Mille, Emiel van Miltenburg, Sashank Santhanam, and Verena Rieser. “Twenty
years of confusion in human evaluation: NLG needs evaluation sheets and standardised defini-
tions”. In: Proceedings of the 13th International Conference on Natural Language Generation.
2020, pp. 169–182.

47 of 61

https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://www.aclweb.org/anthology/P19-1500
http://www.aclweb.org/anthology/W04-3252
https://arxiv.org/abs/1906.04165
https://arxiv.org/abs/1906.04165
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://www.nist.gov/tac/publications/2011/additional.papers/Summarization2011%5C_MultiLing%5C_overview.proceedings.pdf
http://www.nist.gov/tac/publications/2011/additional.papers/Summarization2011%5C_MultiLing%5C_overview.proceedings.pdf
http://www.nist.gov/tac/publications/2011/additional.papers/Summarization2011%5C_MultiLing%5C_overview.proceedings.pdf


D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

A. Reporter API Description

A.1. Endpoints

• GET /api/languages - List supported languages
• GET /api/formats - List supported formats
• POST /api/report - Produce a report from multipart/form-data input
• POST /api/report/json - Produce a report from application/json input

A.2. GET /api/languages

Describes the languages supported by the Reporter. All languages in the response are valid to be used
as the language parameter in the POST /api/report request.

A.2.1. Parameters

None

A.2.2. Example Response

1 {
2 " languages ": [
3 "en",
4 "fi",
5 "de",
6 "fr"
7 ]
8 }

A.3. GET /api/formats

Describes the text formatting options supported by the Reporter. All formats in the response are valid
to be used as the format parameter in the POST /api/report request.

A.3.1. Parameters

None
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A.3.2. Example Response

1 {
2 " formats ": [
3 "p",
4 "ol",
5 "ul"
6 ]
7 }

A.4. POST /api/report

Produces a natural language report from analytical results. The response consists of three mandatory
fields, language which describes the language of the report, body which contains a list of the body text
segments of the report as HTML and head which contains a list of the headers assoaciated with each
body text segment. In other words, the first body text segment (of potentially multiple paragraphs) is
associated with the first header.

This endpoint assumes the body of the request has Content-Type set to multipart/form-data, with
the contents of the data field being a JSON string. Each of the fields (defined below) is presented as
it’s own form field.

The response can also contain an additional errors field, which describes any errors encountered
during the generation process. It is possible for there to be multiple errors, as each header and section
of the document is generated separately, as noted in Section 6.

A.4.1. Parameters

Field Description
language The language the report should be written in. Valid values are those returned by the

GET /api/languages endpoint.

format The format of the body of the report. Valid values are those returned by GET /api/for-
mats endpoint. Supported values are ‘p’ for paragraphs of text, ‘ul’ for a list of bullet
points and ‘ol’ for a list with numbered elements.

data A JSON list of analysis results returned by the Investigator as a JSON object. Format
of the individual results is dictated by Deliverable D5.3, which describes the initial
version of the Investigator.

links Optional field. Setting the value to ‘True’ produces a report containing link tags (see
Section 5.9. Omission of the field, or setting it to ‘False’, results in a text without link
tags.
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A.4.2. Example Response

1 {
2 " language ": "en",
3 "body": [
4 "<p >... </p>",
5 ...
6 ],
7 "head": [
8 "<h1 >...</h1 >",
9 ...

10 ]
11 }

A.5. POST /api/report/json

Identical to /api/report with the exception that the request is expected to have a Content-Type of
application/json. The body is then expected to consist of a single JSON object, with fields corre-
sponding to the fields defined in A.4.1. See A.4.2 for example output.
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Abstract

In this work, we present a method for con-
tent selection and document planning for
automated news and report generation from
structured statistical data such as that of-
fered by the European Union’s statistical
agency, Eurostat. The method is driven by
the data and is highly topic-independent
within the statistical dataset domain. As
our approach is not based on machine learn-
ing, it is suitable for introducing news au-
tomation to the wide variety of domains
where no training data is available. As such,
it is suitable as a low-cost (in terms of im-
plementation effort) baseline for document
structuring prior to introduction of domain-
specific knowledge.

1 Introduction

Automated generation of news texts from struc-
tured data – often referred to as ‘automated jour-
nalism’ (Graefe, 2016; Dörr, 2015; Caswell and
Dörr, 2018) or ‘news automation’ (Linden, 2017;
Sirén-Heikel et al., 2019; Dierickx, 2019) – is of
great interest to various news producers. It is seen
as a way of ‘providing efficiency, increasing output
and aiding in reallocating resources to pursue qual-
ity journalism’ (Sirén-Heikel et al., 2019, p. 47).
While data-to-text NLG systems are still far from
common especially among the smaller, regional
news industry players, at least among the larger
newsrooms the use of NLG approaches has clearly
been established (Fanta, 2017).

While secrecy in the industry makes it difficult
to establish the commercial reality as an outsider,
the limited available evidence indicates that com-
mercial automated journalism is mostly done using
rule-based methods despite a surge of academic in-
terest in increasingly complex neural methods for
NLG (e.g. Puduppully et al., 2019; Ferreira et al.,

2019): Interviews of news automation users indi-
cate that the employed methods are mostly based
on templates (Sirén-Heikel et al., 2019), as are the
few open source code repositories of real-world
news automation systems (Yleisradio, 2018). In-
deed, some NLG industry experts believe that es-
pecially end-to-end neural models do not match
customer needs at this time (Reiter, 2019).

Contributing factors include a lack of control
(Reiter, 2019); issues with hallucination of non-
grounded output (Nie et al., 2019; Dušek et al.,
2019; Reiter, 2018); the difficulty in surgically
correcting any issues identified in trained neural
models beyond additional training; as well as the
difficulty of establishing what the ‘worst case’ per-
formance of a neural model is.

In addition, we believe that that while neural
NLG methods are theoretically highly transferable,
the practical transferability of neural NLG solu-
tions to many news domains is limited by a lack
of training data. While newsrooms have extensive
archives of news text, these are rarely associated
with the matching data that is the ‘input’ for each
piece of news text (E.g., MacKová and Sido, 2020,
pp. 43–44, Kanerva et al., 2019, p. 247). At the
same time, the non-trainable methods for NLG,
too, suffer from difficulties in transferability and
reusability (Linden, 2017).

In this work, we investigate document planning
(selecting what content and in what order should
appear in the document) for structured, statistical
data-to-text NLG in the context of automated jour-
nalism targeting human journalists. We are not in
search of a perfect method, but rather something
that is relatively easy to implement as a subdomain-
independent baseline and which can then be en-
hanced with domain-specific processing later-on.
Such a method would make it easier to introduce
automated journalism solutions to completely new
subdomains within the larger statistical data do-
main.
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2 Structuring Hard News

When queried for insight into news structure, jour-
nalists and academics often recite the concept of
the “(inverted) news pyramid”, where the news
article is structured so that the order in which infor-
mation appears in the text reflects the journalist’s
belief about the importance of the piece of infor-
mation (Thomson et al., 2008). While the precise
origin of the structure is not clear (Pöttker, 2003),
it has become so prototypical that it is held self-
evident in the journalistic trade literature: “Every
journalist knows how to write a traditional news
text: start with the most important thing and con-
tinue until you have either said everything relevant
or the space reserved for the story runs out” (Su-
lopuisto, 2018, translated from Finnish).

A more rigorous analysis of the structures em-
ployed in ‘hard’ news is presented by White (1997),
who argues that hard news articles have an ‘orbital’
structure consisting of a nucleus which represents
the main point of the article and satellites that give
context and additional information about the nu-
cleus. White (1997) assigns the role of the nucleus
to the combination of the headline and the lead
paragraph of the article, and describes the subse-
quent paragraphs as the satellites. White (1997)
identifies five possible relations between a satel-
lite and the nucleus: elaboration, cause-and-effect,
justification, contextualization and apprisal. Thom-
son et al. (2008), in turn, identify that the satel-
lites can elaborate, reiterate, describe causes or
consequences, contextualize or provide additional
assessment. An important observation is that – as
indicated by ‘orbital’ – these satellites are relatively
freely reorderable without affecting readability or
meaning. Together, these two observations indicate
that a good document plan for hard news (1) prior-
izes more newsworthy items and (2) contains some
overarching theme (exemplified by the nucleus) so
that the text as a whole is coherent, i.e. the satellites
are in some way related to the nucleus.

The relations identified by White (1997) and
Thomson et al. (2008) are highly similar to those
identified in the more general Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988), which
uses similar nucleus-satellite terminology. How-
ever, whereas White (1997) and Thomson et al.
(2008) analyze news text on the level of paragraphs,
RST can be applied on a more fine-grained level
to much shorter text spans. As RST shows that
similar relations can be applied on a sub-paragraph

level, we hypothesize that a reasonably approxi-
mation of a news article might be constructed by
applying White’s (1997) orbital theory also within
paragraphs, by considering the first sentence of the
paragraph a nucleus, and the others as satellites.

Importantly, we interpret the orbital theory of
news structuring to suggest that – as the satellites
are freely orderable – the actual type of relation is
not as important for document planning as knowing
that some relation exists between the satellite and
the nucleus. We hypothesize that while identifying
whether a specific (RST) relation exists between
two arbitrary pieces of information requires domain
knowledge, an approximation of whether two arbi-
trary pieces of information are related in some way
could be obtained by inspecting their similarity in
a domain-independent fashion.

That is, we expect that a piece of information
regarding the US health care funding in 2020 is
more likely to be related in some way to a piece of
information discussing the US health care funding
in 2020 than to another piece of information dis-
cussing the health care funding in Sweden in 1978.
If a heuristic or similarity measure identifying such
relations could be identified, it could be used to-
gether with some estimate of newsworthiness to
construct paragraph and document plans that seek
to maximize both the key aspects identified above:
newsworthiness and the relatedness of the content.

As noted in the introduction, there is a distinction
between the theoretical and the practical transfer-
ability of neural processing methods. We believe
that a good baseline document planning and con-
tent selection approach should avoid the need for
training data present in the many of recently pro-
posed document planning and content selection ap-
proaches. This rules out as unsuitable most recent
work that are based on learning from an aligned
corpus of data and human-written texts, such as
Angeli et al. (2010), Konstas and Lapata (2013),
Wiseman et al. (2017), Zhang et al. (2017), Li and
Wan (2018), Dou et al. (2018) and Puduppully et al.
(2019).

Outside of these trainable approaches, to our
knowledge, most other document planning ap-
proaches are based on ‘hand-engineered’ (Kon-
stas and Lapata, 2013), domain-specific methods.
A highly relevant survey of various document
planning methods is presented by Gkatzia (2016).
While these previous works are – to at least some
degree – domain-specific, they establish concepts
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and ideas that are highly relevant for our goal. Both
Hallett et al. (2006) and Gatt et al. (2009) describe
a core set of information, called ‘summary spine’
or ‘key events’, that they hold as more important
than the rest of the available information. They, as
well as Banaee et al. (2013), also employ a numeric
estimate of importance. Demir et al. (2010) iden-
tify that content already selected for inclusion in
the document plan affects how well suited so-far
unselected content is for inclusion. Sripada et al.
(2003) identify Gricean maxims (Grice, 1975) as
providing requirements for document planning and
content selection.

3 Context

Our work on document planning is done in the
context of a series of data-to-text NLG applications
producing short highlights of structured statistical
data. Importantly, the applications are intended to
be deployed in contexts where they must be able
to produce texts highlighting between 10 and 30
data points from datasets measured in 100.000s of
data points. The resulting texts are intended to both
alert journalists to potential news and to provide
them with a starting place from which to write the
final news text.

Our system, adapted from Leppänen et al.
(2017a), is based on a pipeline of components with
dedicated responsibilities similar to those described
by Reiter and Dale (2000) and Reiter (2007). For
this work, the relevant part of the architecture is the
Document Planner component. This component re-
ceives as input two sets of message data structures,
an example of which is shown in Table 1.1 The
messages are extracted automatically from tables
of statistical data obtained from Eurostat.

The core set contains messages that are known to
be highly relevant to the generation task. Unlike the
“summary spine’ of Hallett et al. (2006), the set is
unlinked and unordered, and not all members of the
set are guaranteed to be included in the document
plan. The expanded set, contains messages that can
be, but are not guaranteed to be, relevant for the
document. Expressed using the terminology from
Section 2, we assume that only messages in the
core set can be nuclei, while messages from either
set can be satellites.

These core and expanded sets are determined
automatically from user input. When requesting

1The concrete implementation details are somewhat more
complex. We omit details irrelevant for this work.

a new text, the user of the system must define a
dataset the text is to be generated from, for example
the consumer price data available from Eurostat.
This dataset is then divided into the core set and
the expanded set by the user when they select what
country the generated text should focus on. For
example, if the user were to select that the text
should discuss French consumer prices, the core
set would contain all data from the consumer price
dataset that pertains directly to France, while the
rest of the consumer price dataset (including data
pertaining to the UK, Finland, Croatia, etc.) would
be set as the expanded set.

We estimate each message’s ‘newsworthiness’
using the Interquartile Range based method de-
scribed by Leppänen et al. (2017b) with the values
scaled to have mean 0 and standard deviation 1
for the purposes of this computation. The result-
ing value is conceptually similar to ‘importance’
of Gatt et al. (2009) and ‘risk’ of Banaee et al.
(2013). The IQR based method compares each data
point in turn to a larger distribution, giving it higher
scores the further it is from the area between the
first and the third quartile of the larger distribution.
Values between the quartiles are given a minimal,
uniform, score that is dependent on the shape of the
distribution. In other words, higher IQR values in-
dicate that the value is more of an outlier compared
to the rest of related data in the dataset. As such, it
captures a degree of ‘unexpectedness’, which is an
important aspect of newsworthiness (Galtung and
Ruge, 1965).

We do not use the domain-specific parts of the
method described by Leppänen et al. (2017b). That
is, we make no value judgement of whether mes-
sages pertaining to French consumer prices are
more newsworthy than messages pertaining to
Croatian consumer prices, nor do we make judge-
ments of whether changes in the price of educa-
tion are more or less newsworthy than changes in
the price of alcohol and tobacco. However, we
do weight the scores so that messages with the
timestamp field being closer to present receive
higher weights, as recency is an important aspect
of newsworthiness. While we have described our
method for computing the newsworthiness
value in some detail, we emphasize that for
the rest of this article we only assume that the
newsworthiness values are non-negative and
that higher values indicate higher newsworthiness.

More crucially for the method described be-
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low, we specify that the value type fields
(which describe how the messages’ values
are to be interpreted) contain members of
a hierarchical taxonomy of data types rep-
resented as colon-separated hierarchies of la-
bels. For example, the value type field value
health:cost:hc2:mio eur would indicate
that the number in the value field is the amount
of money (cost), measured in millions of eu-
ros (mio eur), spent by some nation (as de-
fined by the location and location type
fields) on rehabilitative care (hc2) in some
time period (as defined by the timestamp and
timestamp type fields) and that this is part of
the larger health care topic (health). In our case,
these labels are automatically established from the
headers of the input data tables.

The goal of document structuring is to produce
a three-level tree-structure with ordered children.
The root node corresponds to the document as a
whole and the mid-level structures correspond to
paragraphs. The leaves are the messages selected
for inclusion in the document. While the messages
have not yet, at this stage, been associated with any
linguistic structures, they can be conceptualized as
being phrases or very short sentences. We are thus
concurrently determining both the content and the
structure the document.

We emphasize that our applications are em-
ployed in domains where they must be able to
select some 10-30 messages from a pool of po-
tential messages numbering in 100,000s. Given
infinite computational resources, it would be pref-
erential to construct all possible document plans
and then score them in some fashion. This, how-
ever, is infeasible given the size of the search space.
Previously, other authors have employed, for exam-
ple, stochastic searches with significantly smaller
search spaces (Mellish et al., 1998). Indeed, some
kind of a beam search approach could be very use-
ful in smartly searching a subset of the search space.
However, we have thus far been unable to identify a
document-level metric that adequately balances the
‘total amount of newsworthiness’ in a text with the
length of the text, a requirement for beam search.

4 Research Objective

Based on the above considerations, our main goal is
to identify a widely applicable method for content
selection and document planning that matches the
following requirements:

REQ1: The method needs to be highly performant

REQ2: The method should not be dependent on
domain knowledge

REQ3: The document should have a theme

REQ4: The document should have multiple para-
graphs but not be excessively long

REQ5: The paragraphs should have distinct
themes related to the document theme

REQ6: The paragraph themes should be newswor-
thy in their own right

REQ7: The paragraphs should not be excessively
long or short

REQ8: All messages should relate to the para-
graph theme

REQ9: All messages should be newsworthy

REQ10: Within each paragraph, the messages
should be presented in an order that pro-
duces a coherent narrative

Again, we emphasize that our goal is not to iden-
tify a method that is optimal for any specific sce-
nario, but rather to determine a baseline method
that is adequate for a broad spectrum of applica-
tions and sub-domains.

5 A Baseline Approach to Document
Planning

Optimally, we would wish to produce some sort
of a globally optimal document plan. However,
as discussed above, this would entail significant
computational costs and require a scoring function
applicable to the document as a whole. As such, we
propose a method for producing document plans
in a greedy, linear, and iterative fashion. At ev-
ery stage, decisions are made considering only a
limited local context, thus avoiding the need for
a method of determining the global quality of the
document plan, thus fulfilling REQ1 (‘The method
needs to be highly performant’).

The document’s overall theme, in our use case,
is selected by the user who initiates the generation
task. In initiating the task, the users selects both a
dataset and a focus location. The generation pro-
cess then derives the core messages and expanded
messages sets (the inputs to the Document Planner,
see Section 3) so that both sets discuss the dataset
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Field Description Example value
where What location the fact relates to Finland
where type What the type of the location is country
timestamp The time (or time range) the fact relates to 2020M05
timestamp type The type of the timestamp month
value A (usually) numeric value 0.01
value type Interpretation of value cphi:hicp2015:cp-hi02:rt01
newsworthiness An estimate of how newsworthy the message is 1

Table 1: An example of a message. The hypothetical message states that in the fifth month of 2020, in
Finland, the consumer price index, using the year 2015 as the start of the index, of alcoholic beverages
and tobacco changed by 0.01 points with respect to the value of the index during the previous month.

indicated by the user (i.e. messages from other
datasets are not generated) and that the core set con-
tains messages pertaining to the user’s indicated
focus location, while messages pertaining to all
other locations are in the expanded set. This fulfills
REQ3 (‘The document should have a theme’). This
step is also independent of the specific subdomain,
thus fulfilling REQ2 (‘The method should not be
dependent on domain knowledge’). This step thus
fulfills all the relevant requirements. Next, we’ll
describe how both the first and subsequent para-
graphs can be planned in a way consistent with the
requirements defined above.

5.1 Planning the First Paragraph

At the start of the document planning process, we
select the most newsworthy message from the core
messages set to act as the nucleus (n1) of the first
paragraph (p1). This nucleus establishes the theme
of the first paragraph as follows: We inspect the
value type field of this first nucleus n1, and
retrieve a prefix Prefix(n1). The prefix is the
least amount of colon-separated labels wherein the
total amount of prefixes in the core set is greater
than the minimal amount of paragraphs a docu-
ment can have, in our case two. In our case, as a
consequence of our label hierarchy, this is always
the first three colon-separated units. For the mes-
sage shown in Table 1, the prefix would thus be
cphi:hicp2015:cp-hi02, meaning that the
first paragraph’s theme would be the prices of al-
coholic beverages and tobacco. This fulfills REQ5,
‘the paragraphs should have distinct themes related
to the document theme’ for the first paragraph.

Next, the first paragraph is completed with satel-
lites from the union of the core messages and the
expanded messages sets. These satellites are ini-
tially filtered so that only messages that have the

same prefix as the nucleus ni are considered in
paragraph pi to fulfill REQ8 (‘All messages should
relate to the paragraph theme’). The satellites are
then selected in a linear, greedy, and iterative man-
ner to fulfill REQ1.

For selecting the k’th satellite to a partially con-
structed paragraph already containing k − 1 satel-
lites and one nucleus, we consider both the news-
worthiness of the available messages (REQ9), as
well as how well they would fit the already con-
structed segment (REQ8). Observing only the
newsworthiness would produce a highly incoherent
narrative, whereas focusing only on the narrative
risks leaving out highly important information.

Following the reasoning in Section 2, we as-
sume that two subsequent messages are more likely
to form a good narrative if they are similar. As
such, we need a method for weighing the message’s
newsworthiness by the similarity of the message
to the last message of the under-construction para-
graph, thus balancing the requirements of REQ8
and REQ9. In terms of the message objects de-
scribed in Table 1, it seems to us that the intu-
itive aspects of similarity are related to the de-
gree of similarity within the ‘meta’ fields such as
timestamp, location and value type.

For the timestamp and location fields, we
can state that two messages that have identical val-
ues in the fields are more similar that two messages
that are otherwise the same but have distinct values
for said fields. We call this the contextual similarity
of the messages, and the fields the contextual fields
(Fc), as these fields provide us access to the larger
context in which the value and value type
fields can be interpreted. Contextual similarity cap-
tures the notion that it is likely better to follow a
fact about French healthcare spending in 2020 with
another piece of information about France in 2020,
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rather than about Austria in 1990.
In more precise terms, we propose the following

weighing scheme for contextual similarity: The
similarity simc(A,B) of two messaged A and B
is the product of weights wf > 1 for each field f
among the contextual fields Fc, where both A and
B have the same value for the field:

simc(A,B) =
∏

{f∈Fc|A.f=B.f}
wf (1)

This value strictly increases as more fields are
shared between A and B. We explicitly define
the similarity to be zero if there are no fields f
where A and B share a value. If wf is a uniform
value for all fields f , this scheme is completely
domain-agnostic. Setting different weights wf for
each field f ∈ Fc allows for encoding some do-
main knowledge about which fields are the most
important for the text, thus providing a method
for producing more tailored texts at the cost of
slightly violating REQ2. In our case study, we set
wtimestamp = 1.1 and wlocation = 1.5.

The above consideration of similarity still ig-
nores valuable information available from the
value type field, which describes how the
value in the value field is to be interpreted.
Denoting health:cost:hc2:mio eur (the
cost of rehabilitative care in millions of eu-
ros) by T1, consider its similarity to T2 =
health:cost:hc2:eur hab, the cost of re-
habilitative care as euros per inhabitant, and T3

= health:cost:hc41:mio eur, the cost of
health care related imaging services in millions of
euros. Intuitively, T1 and T2 are thematically closer
than T1 and T3. We model this similarity between
two facts A and B simply as

simt(A,B) =
1

s(A,B)
(2)

where s(A,B) is the length – in colon-separated
units – of the unshared suffix between A and
B’s value type fields. That is, s(T1, T2) = 1
whereas s(T1, T3) = 2. We specify that simt(·, ·)
is zero for all pairs without any shared prefix.

Our formulation of simt(·, ·) was influenced
by the observation that in our context the mes-
sages’ value type values have a constant num-
ber of colon-separated segments. In cases where
the lengths of the value type values differ, an
alternative formulation of

sim ′t(A,B) =
2p(A,B)

`(A) + `(B)
(3)

where `(·) provides the length of the value type
value, and p(·, ·) is the length of shared prefix be-
tween A and B, both measured as colon-separated
units, might be preferable if also more complex.

When considering whether the k’th satellite ski
of paragraph pi should be a specific candidate
c ∈ C, where C is all so far unused messages,
we can combine the similarity metrics with the
newsworthiness of c into a general fitness value as
follows:

fit(c, x) = c.newsworthiness

× simc(c, x)

× simt(c, x)

× set penalty(c)

The set penalty(c) factor depends on whether
the message originates from the core messages set,
or the extended messages set. For messages origi-
nating from the core message set, the penalty is 1.
For messages originating from the extended mes-
sages set, the penalty is 1

dist+1 , where dist is the
distance from the previous core message.

The final score describing how good of an ad-
dition c would be as the kth satellite of the ith
paragraph ski is then obtained by taking the average
of fitnesses of c in relation to both the nucleus ni

and the previous satellite sk−1i by computing:

score(c, ni, s
k−1
i ) =

fit(c, ni) + fit(c, sk−1i )

2

This maximizes the newsworthiness of the para-
graph’s contents (fulfilling REQ9, ‘all messages
should be newsworthy’), while also enforcing re-
latedness to the theme of the paragraph (fulfilling
REQ8, ‘all messages should relate to the paragraph
theme’) by measuring against the nucleus and with
the inclusion of the set penalty. By continuously
measuring against the previously selected satellite,
the procedure also allows for interludes to e.g. dis-
cuss highly newsworthy information related to but
not strictly about the paragraph’s main topic, or
‘thematic drift’. It thus fulfills REQ10 (‘Within
each paragraph, the messages should be presented
in an order that produces a coherent narrative’)
while also paying attention to the pyramid model
of news (See Section 2).

Using score, the highest scoring candidate
ctop = argmaxc∈C score(c, ni, s

k−1
i ) is then

compared to both an absolute threshold tabs and
the newsworthiness of the nucleus ni multiplied
by relative threshold value trel . Provided that the
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maximal paragraph length has not been reached,
the top candidate message ctop is appended to the
paragraph pi as the k’th satellite ski in the document
plan provided that either score(ctop , ni, s

k−1
i ) ≥

tabs or score(ctop , ni, s
k−1
i ) ≥ trel ×

ni.newsworthiness .
These thresholds ensure that the paragraph does

not stray into minutiae, whether considered in ab-
solute terms or in relation to the nucleus of the
paragraph. In cases where the minimum paragraph
length has not been reached, the thresholds are ig-
nored and the top candidate is always appended.
This accounts for REQ7 (‘The paragraphs should
not be excessively long or short’).

The above considerations take into account sev-
eral free parameters, namely the maximal and min-
imal paragraph lengths as well as the threshold
values trel and tabs . In our case study, we selected
the minimal and maximal paragraph lengths as 2
and 5 messages empirically by trialing out various
values and observing the resulting texts. These
should, naturally, be based on the genre of text
and the target audience. For the threshold values
we selected 0.2 and 0.5, respectively, using the
same method as with the paragraph lengths above.
Both the thresholds and the minimal and maximal
paragraph lengths should be viewed as (manually)
tuneable hyperparameters.

5.2 Planning Subsequent Paragraphs
We then proceed to generate further paragraphs in
a manner highly similar to that used when planning
the first paragraph. The only distinction is that,
when selecting the nucleus ni for a subsequent
paragraph pi, we obtain the message from the core
messages set with a highest newsworthiness value
that has a prefix (theme) not yet discussed among
the previously planned paragraphs p1 - pi−1:

ni = argmax
c∈C

c.newsworthiness (4)

where

C =
{
c ∈ CoreMessages|Prefix(c) 6∈

{Prefix(nk)|k ∈ [1..i− 1]}
} (5)

This ensures that the different paragraphs are highly
newsworthy, thus fulfilling REQ6, while also ful-
filling REQ5 for having distinct themes for the
different paragraphs.

As when constructing the subsequent paragraphs,
the total length of the document also needs to

be considered. To fulfill REQ4 (‘The document
should have multiple paragraphs but not be exces-
sively long’), we employ a variation of the method
described in the previous section for ending indi-
vidual paragraphs. A maximal length (in our case,
3 paragraphs) ensures that the document is not al-
lowed to grow beyond reason, whereas a minimal
length (for us, 2 paragraphs) ensures that the docu-
ment is not unreasonably short. After the minimal
length has been reached (but not yet the maximal
length), a new paragraph is only started if the nu-
cleus of the potential paragraph has a newsworthi-
ness value that is at least 30 % of the newswor-
thiness value of the first nucleus of the document.
This, as with the satellites, ensures that the the
document does not stray into minutiae, balancing
REQs 4 and 6. the maximal and minimal lengths,
as well as the 30 % threshold, were determined
by manual fine-tuning and should be viewed as
tuneable hyperparameters.

6 Evaluation

The method described above was implemented in a
larger NLG application producing news alerts for
journalists from datasets provided by Eurostat. A
variation of the same application was also devel-
oped with a simplified document planner. In this
simplified planner, the planner always selects the
maximally newsworthy available message as the
message without any early stopping threshold. Nu-
clei are selected from the core messages set, while
satellites can be from either set. Contrasting our
proposed method with this simplified method en-
ables us to evaluate the importance of narrative
coherence in the generated texts. The larger ap-
plication is multilingual, but the evaluation was
conducted using English language texts.

Three experts were recruited from the Finnish
News Agency STT, a national European news
agency, to evaluate documents on the consumer
price indices in five different European nations.
For all nations, the judges were shown variants
produced by both our proposed method and the
simplified method. One of the selected countries
is the country the news agency is based in, with
the assumption that the judges would have high
amounts of world knowledge they would be able to
use in evaluating these texts. Another variant pair
describes a country that is both relatively small and
geographically remote (but still within EU), with
the assumption that the journalists are unlikely to
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Consumer Prices in Estonia

In June 2020, in Estonia, the monthly growth rate
of the harmonized consumer price index for the
category ’education’ was 30.8 points. It was 30.7
percentage points more than the EU average. In
July 2020, it was 0.4 percentage points less than
the EU average. It was -0.4 points. In May 2020,
the yearly growth rate of the harmonized consumer
price index for the category ’education’ was -20.5
points. It was 21.9 percentage points less than the
EU average.

In August 2020, the monthly growth rate of the
harmonized consumer price index for the category
’housing, water, electricity, gas and other fuels’ was
2.5 points. It was 2.3 percentage points more than
the EU average. In North Macedonia, it was 3 per-
centage points more than the EU average. It was 3.2
points. Estonia had the 3rd highest monthly growth
rate of the harmonized consumer price index for the
category ’housing, water, electricity, gas and other
fuels’ across the observed countries. In Sweden, the
monthly growth rate of the harmonized consumer
price index for the category ’housing, water, elec-
tricity, gas and other fuels’ was 3.1 points.

Figure 1: Example output regarding Eurostat statis-
tics on consumer prices. The text contains 12
messages, selected from among 207,210 messages
available during generation.

have much world knowledge about this country’s
consumer prices. The three other countries were
selected from among those bordering the first coun-
try, with the assumption that the journalists would
have some, but not much, world knowledge relat-
ing to these countries. The final output texts were
not inspected prior to selecting the countries.

All of the texts used in the evaluation were gen-
erated from a copy of the same underlying Eurostat
dataset, entitled ‘Harmonised index of consumer
prices - monthly data [ei cphi m]’2 downloaded
in September 2020. It contains country-level data
regarding the harmonized consumer prices indices,
and their change over time, for various EU nations
starting from January 1996. We preprocess the data
by adding monthly rankings (i.e. determine what
country had the greatest, the second greatest, etc.
value for a specific index category during any spe-
cific month) and comparisons to the EU average
values.

As the evaluation was focused on document plan-
ning and content selection, the larger system was
simplified in some respects, e.g., to not conduct

2Available for download and browsing from
http://appsso.eurostat.ec.europa.eu/
nui/show.do?dataset=ei_cphi_m

complex aggregation. This was done to minimize
the effect of later stages of the generation process
on the evaluation. As a result, the language in the
evaluated documents was relatively stilted, as ex-
emplified by Figure 1. The only manual alteration
was the addition of headings to indicate the texts’
intended themes.

The judges did not receive any direct compensa-
tion but their employer, the news agency, is a mem-
ber of the EU-wide EMBEDDIA research project
within which parts of this work was conducted.
The evaluations were conducted online. The judges
were first provided with some basic information on
the type of documents they were to read (i.e. that
the texts are intended to be news alerts for journal-
ists, rather than publication ready news texts), the
length of the task, etc. All instructions were in the
judges’ native language, in this case Finnish. The
judges were not told which texts were produced by
which variants nor how many variants were being
tested. Following this, the judges were shown the
documents one by one. For each document, the
judges were asked to indicate their agreement with
the following statements (translated from Finnish):

Q1: The text matches the heading

Q2: The text is coherent

Q3: The text lacks some pertinent information

Q4: The text contains unnecessary information

Q5: The text has a suitable length

For Q1–Q4, the judges indicated their agreement
on a 7-point Likert scale ranging from 1 (‘com-
pletely disagree’) to 7 (‘completely agree’). For
Q5, the answers were provided on 5-point scale
ranging from 1 (‘clearly too short’) to 3 (‘length is
suitable’) to 5 (‘clearly too long’). In addition, the
judges were able to provide textual feedback for
each individual text, as well as for the evaluation
task as a whole. The judges’ answers to Q1 – Q5,
are aggregated in Table 2.

The results indicate that the proposed method
statistically significantly increases the document’s
coherence (Q2, mean 4.33 vs. 1.60, median 5 vs 2),
the matching of the document’s content to the doc-
ument’s theme (Q1, mean 4.40 vs. 1.80, median
5 vs 2), and produces documents of more suitable
length (Q5, mean 2.93 vs. 4.07, median 3 vs 4, with
3 being best). The proposed method also seems
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Our method Baseline

Statement Median Mean SD. Median Mean SD. pMWU

Q1 (1–7, ↑) 5 4.40 1.64 2 1.80 0.41 < 0.001*
Q2 (1–7, ↑) 5 4.33 1.76 2 1.60 0.51 < 0.001*
Q3 (1–7, ↓) 4 4.47 1.81 6 5.80 1.42 0.049
Q4 (1–7, ↓) 5 5.13 1.55 6 6.33 0.62 0.024
Q5 (1–5, 3 best) 3 2.93 0.59 4 4.07 0.70 < 0.001*

Table 2: Results obtained during the evaluation. Parentheses indicate answer ranges and whether the
higher (↑), lower (↓) or middle values are to be interpreted as the best. The pMWU column contains the
(uncorrected) p-value of a two-sided Mann-Whitney U test. An asterisk indicates the p-value is statistically
significant also after applying a Bonferroni correction to account for multiple tests.

to result in less unnecessary information being in-
cluded in the document (Q4, mean 5.13 vs 6.33,
median 5 vs 6), and in the text missing less neces-
sary information (Q3, mean 4.47 vs 5.80, median 4
vs 6), but these effects are not statistically signifi-
cant after correcting for multiple comparisons with
the Bonferroni correction. We hypothesize this dif-
ference would become significant in a larger-scale
evaluation.

The free-form textual feedback provided by the
judges, as expected, indicates that the texts could
be further improved. For example, in the case of
the text shown in Figure 1, the judges called for
a sentence explicitly noting that North Macedonia
had the highest monthly growth rate. In addition,
they noted it might be better to produce distinct,
even shorter, texts as ‘news alerts’ while reserving
the evaluated texts for use as a starting point when
the journalist starts writing.

7 Conclusions

In this work, we have identified a need for, and
proposed, a widely applicable baseline document
planning method for generating journalistic texts
from statistical datasets. Our method is based on
observations on the similarities between the orbital
theory of news structure (White, 1997) and Rhetor-
ical Structure Theory (Mann and Thompson, 1988).
While our proposed method is likely to fall short
of the performance of subdomain-specific planning
methods, results indicate that it achieves adequate
performance while fulfilling a set of requirements
identified based on the larger application domain
of news generation.
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Konstantin Nicholas Dörr. 2015. Mapping the field of
algorithmic journalism. Digital journalism.

Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge
Yao, and Chin-Yew Lin. 2018. Data2text studio:
Automated text generation from structured data. In

D5.7: Personal Research Assistant: Reporter (final) CULT-COOP-09-2017

59 of 61



Proc. 2018 Conference on Empirical Methods in
Natural Language Processing.
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