
Project Number: 770299

NewsEye:

A Digital Investigator for Historical Newspapers

Research and Innovation Action
Call H2020-SC-CULT-COOP-2016-2017

D2.7: Article separation (c) (final)

Due date of deliverable: M45 (31 January 2022)

Actual submission date: 31 January 2022

Start date of project: 1 May 2018 Duration: 45 months

Partner organization name in charge of deliverable: UROS

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

PU Public PU
PP Restricted to other programme participants (including the Commission Services) -
RE Restricted to a group specified by the Consortium (including the Commission Services) -
CO Confidential, only for members of the Consortium (including the Commission Services) -

D2.7: Article separation (final) CULT-COOP-09-2017

Revision History

Document administrative information

Project acronym: NewsEye

Project number: 770299

Deliverable number: D2.7

Deliverable full title: Article separation (c) (final)

Deliverable short title: Article separation (final)

Document identifier: NewsEye-T23-D27-ArticleSeparation-c-final-Submitted-v6.0

Lead partner short name: UROS

Report version: V6.0

Report preparation date: 31.01.2022

Dissemination level: PU

Nature: Report

Lead author: Johannes Michael (UROS)

Co-authors: Max Weidemann (UROS), Roger Labahn (UROS)

Internal reviewers: Günter Hackl (UIBK-DEA), Leo Leppänen (UH-CS)

Status:

Draft
Final

x Submitted

The NewsEye Consortium partner responsible for this deliverable has addressed all comments re-
ceived, making changes as necessary. Changes to this document are detailed in the change log table
below.

2 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Change Log

Date Version Editor Summary of changes made

03/03/2021 1.0 Johannes Michael, Max
Weidemann, Roger
Labahn (UROS)

First full draft

03/03/2021 1.1 Johannes Michael, Max
Weidemann (UROS)

Final changes before internal review

23/03/2021 2.0 Johannes Michael, Max
Weidemann (UROS)

Taking reviewer comments into account

22/04/2021 3.0 Johannes Michael, Max
Weidemann (UROS)

Final adjustments following quality manage-
ment

03/01/2022 4.0 Johannes Michael, Max
Weidemann, Roger
Labahn (UROS)

First full draft of the updated deliverable

05/01/2022 4.1 Johannes Michael, Max
Weidemann, Roger
Labahn (UROS)

Final changes before internal review

21/01/2022 5.0 Johannes Michael, Max
Weidemann, Roger
Labahn (UROS)

Final update, taking reviewer comments into
account

31/01/2022 6.0 Antoine Doucet (ULR) Minor adjustments and submission

3 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Executive summary

This report describes the third task of WP 2, namely the article separation task (Task T2.3). Our article
separation approach is partially based on the layout analysis task (Task T2.1) giving us a set of baselines
detected on a newspaper page. Therefore, this deliverable has to be seen in close connection to M24
(April 2020) public Deliverables D2.4 on layout analysis and D2.5 on automated text recognition, whose
workflows provide us with helpful content information for further steps in the article separation process.

In year one we introduced a new error measure for article separation. Furthermore, we presented a
first attempt of a simple clustering-based approach to extract articles. The underlying data structure for
all our considerations is the well-established PAGE format1, which is described in detail in Deliverable
D1.9, Section 3.2.1.

In year two we introduced the concept of a ‘news item’, which is NewsEye’s internal definition of an
article. We use a two-stage strategy to extract them. The first stage of this methodology, namely text
block segmentation, was the main goal of year two and the corresponding algorithms were tested and
evaluated for a given set of newspaper pages.

In year three we focused on the second stage, namely forming news items from a combination of text
blocks. To this end we introduce an updated article separation workflow. This includes a collection of
new modules, which are described in detail in this report. Additionally, a competition regarding the text
block segmentation was held during the last year and we briefly present its results. Besides, this public
document also includes some crucial information from previous, non-public deliverables (D2.3, D2.6)
about the article separation measure, the definition of a news item and the data formats.

In the prolongation phase of the project, new data sets were processed, a new user-feedback inspired
measure was introduced and some additional experiments were done, including work in collaboration
between UROS and ULR. Finally, the software modules from year three were migrated to the Tran-
skribus platform.

The source code developed in this task is openly available on GitHub and is listed under the NewsEye
repositories2.

Overall, when comparing our final results to our original baseline method, we record relative error im-
provements of 73.7 %, 49.6 % and 48.6 % (depending on the data set) regarding the article separation
task. This is above the KPI goal which was set at a 20 − 40 % relative improvement over initial bench-
marks.

1https://www.primaresearch.org/schema/PAGE/gts/pagecontent/2016-07-15/Simple%20PAGE%20XML%20Example.pdf
2https://github.com/NewsEye/Article-Separation

4 of 54

https://www.primaresearch.org/schema/PAGE/gts/pagecontent/2016-07-15/Simple%20PAGE%20XML%20Example.pdf
https://github.com/NewsEye/Article-Separation

D2.7: Article separation (final) CULT-COOP-09-2017

Contents

Executive Summary 4

1 Introduction 7

2 Proposed article separation measure 8

2.1 Notation . 9
2.2 R and P matrices . 9
2.3 R-, P- and F-value for article separation . 10

3 From articles to news items 11

4 Data 13

4.1 Ground truth format . 13
4.2 NewsEye data sets . 13

5 Workflow 15

6 Modules 16

6.1 Baseline detection . 16
6.2 Automatic text recognition . 16
6.3 Text block detection . 16

6.3.1 Baseline clustering . 19
6.3.2 Semantic segmentation using RU-Net . 19
6.3.3 Instance segmentation using Mask R-CNN . 20

6.4 Separator detection . 21
6.4.1 RU-Net for separator detection . 22
6.4.2 Post-Processing . 23
6.4.3 Baseline correction . 24

6.5 Heading detection . 24
6.5.1 ARU-Net for heading detection . 25
6.5.2 Stroke Width Transform for heading detection . 25
6.5.3 Combination of both approaches . 26

6.6 Content based features for text block relations . 27
6.6.1 Word vector based text block similarities . 27
6.6.2 BERT based text block similarities . 28

6.7 Graph neural network . 29
6.8 Text block clustering . 31

7 Experiments and results 32

7.1 Semantic context with BERT . 33
7.2 GNN training with pseudo ground truth . 34
7.3 GNN generalization capabilities . 34
7.4 News item clustering . 36
7.5 Internal user satisfaction . 37

8 Competition on text block segmentation 38

9 Prolongation Update 39

9.1 New data sets . 39

5 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

9.2 Comparative article separation measure . 43
9.3 ULR text block similarity feature . 43
9.4 Rule-based post-processing of confidence graph . 44
9.5 Hierarchical text block clustering . 46

9.5.1 Cluster distance metric . 46
9.5.2 Cluster extraction . 48
9.5.3 Evaluation . 50

9.6 Internal user satisfaction survey . 51
9.7 Future work . 52

6 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

1 Introduction

The purpose of the NewsEye project is to enable historians and humanities scholars to investigate
a great amount of newspaper collections. The newspaper pages are digitized and are available as
scanned images. To ensure efficient work, the data processing steps should be as automatic as pos-
sible. Generally, newspapers are structured into large numbers of articles. These usually contain a
distinct piece of content or describe a certain topic and can mostly be understood without any context.
Newspaper articles are crucial entities for historians and humanities scholars who focus on a specific
research area and are only interested in articles related to that topic. Additionally, some natural lan-
guage processing (NLP) applications, like e.g. topic modeling (T4.1) or event detection (T3.3), rely on a
logical structuring of the underlying text, to be able to extract meaningful information. For this reason it
is important to tackle the article separation task, which tries to form coherent articles, based on the pre-
viously detected baselines (see public Deliverable D2.4) and their respective text (see public Deliverable
D2.5).

In year three we introduce an updated workflow on article separation using a mixture of machine learn-
ing models and traditional layout analysis (LA) and clustering algorithms, incorporating results from
tasks T2.1 and T2.2, respectively available in Deliverables D2.4 and D2.5. For the readers who are not
familiar with the previous (non-public) Deliverables D2.3 and D2.6, this deliverable includes the descrip-
tions of our article separation (AS) measure, news items and the used data formats in Sections 2, 3
and 4.1 respectively. A listing of the data sets used for training and evaluating the machine learning
models as well as the three big use cases (one for each library partner) can be found in Section 4.2.
A brief overview of the workflow is given in Section 5. We provide a more detailed description of each
component in Section 6. In Section 7 different kinds of experiments are presented, e.g. on the cen-
tral component, the graph neural network (GNN), and on the final articles/news items. Also, last year
we presented the competition proposal for the ICPR2020 on text block segmentation. The competition
was successful and presented in early 2021 at the postponed ICPR2020 conference, as described in
Section 8.

In the prolongation phase of the project new data sets in Swedish and English/French were processed
and some additional experiments were done in collaboration between UROS and ULR. Furthermore,
we collected and evaluated AS feedback in an internal user satisfaction survey, which also inspired a
new comparative AS measure. Finally, the software modules introduced in year three were migrated
to the Transkribus platform. For the purpose of this deliverable, all updates regarding the prolongation
have been collected in Section 9.

As a reminder, the description of the AS task in the NewsEye description of action is repeated below.

Task 2.3 – Article separation (AS)

This task aims to finally separate newspaper articles, give a coarse classification into basic
types of text vs. non-text blocks, and detect basic named entities with a notable semantic
meaning. We will follow two basic approaches: (a) Geometry and semantics based ap-
proach will employ geometric and textual output from preceding tasks, and combine them
to cluster detected text lines to articles, unveil their types and distinguish entities like title,
place or date of an article. That will be further improved by using available layout knowledge,
by incorporating Language Models, and by exploiting its textual content found by preceding
Text Mining/Topic Modeling techniques. Due to its novelty, the latter will mainly start as
a research topic in synergy with WPs 3 and 4, and be joint work with UH-CS and ULR.

7 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

(b) Machine Learning based approach will investigate different concepts based on Machine
Learning technology. For recovering text mining technologies’ potential for separating news-
paper articles, this approach again starts from a rather early research stage and is led in
collaboration with ULR and UH-CS. The task comprises various neural methods for cluster-
ing text lines found in preceding Layout Analysis modules as well as an end-to-end approach
using direct pixel labeling in the raw image.

2 Proposed article separation measure

Each article consists of a set of text blocks, which in turn consist of a set of baselines (or text lines).
Thus, the AS task can be interpreted as a clustering problem over baselines and any clustering measure
could be used to compute quantitative results. However, since the baselines are not given in real-world
applications and must be determined first (see Task 2.1), it would be useful to be able to evaluate an
end-to-end scenario, i.e. where the first step is to automatically detect baselines, which should then be
clustered into articles. Therefore, we designed a new AS evaluation measure that can take the quality
of the baselines into account. Since baselines are a central concept in this report, we want to remind
the reader of their meaning.

Definition 1 (Baseline). A baseline is defined in the typographical sense as the virtual line where most
of the characters rest upon and descenders extend below.

In other words, a baseline can be described by a polygonal chain where the text rests upon, whereas
the corresponding text line is a polygon that encloses the entire text. This is visualized in Figure 1.

Figure 1: An extract of a newspaper page showing the baselines (top) and respective text lines (bottom).

8 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

2.1 Notation

For the rest of this report we define some notations. Since a baseline is described by a polygonal
chain, i.e. a list of a finite number of ordered 2-dimensional points (= vertices of the chain), it is to be
understood as a vector. Furthermore, to evaluate the quality of our AS system, we have to compare
the results of the algorithm (= hypotheses (HY)) with the ground truth (GT) data provided by our project
partners. GT means, in our context, the ideal system output generated by humans. Per page we define:

• gk is the GT baseline with index k given by human annotators, k ∈ ¶1, . . . , K♢, where K is the
number of all GT baselines of the page.

• hl is the HY baseline with index l detected by the LA system, l ∈ ¶1, . . . , L♢, where L is the number
of all HY baselines of the page.

• Ag,i =
{

gi1
, . . . , gimi

}

is the GT article with index i as a set of GT baselines, i ∈ ¶1, . . . , M♢,
where M is the number of all GT articles of the page.

• Ah,j =
{

hj1
, . . . , hjnj

}

is the HY article with index j as a set of HY baselines, j ∈ ¶1, . . . , N♢,
where N is the number of all HY articles of the page.

Remark Since we ignore the reading order of the baselines, we only consider sets and not lists of
baselines defining articles.

2.2 R and P matrices

In the following, we want to compare the given M GT articles with the generated N HY articles. To this
end we compute two different types of evaluation scores between every GT article and every HY article.
So, we get two matrices of dimension M ×N .

At this point the baseline detection (BD) measure presented in [1] is used, which is composed of the so
called R- and P -value helping us to study the similarity between two sets of baselines.

• The R-value ∈ [0, 1] (see [1], Section 3) indicates, loosely spoken, how well a set of GT baselines
is covered by a set of HY baselines. Hence, this score has similar properties like the well-known
recall value.
⇒ Segmentation errors, e.g. a baseline is split into two lines or two lines are merged to one, are
not penalized, because we measure how reliable the text is detected (ignoring layout issues).

• The P-value ∈ [0, 1] (see [1], Section 3) indicates, loosely spoken, how well a set of HY baselines
is covered by a set of GT baselines. Hence, this score has similar properties like the well-known
precision value.
⇒ Segmentation errors are penalized, because we measure how reliable the structure of the text
lines (layout) of the page is detected. So, this score gives us information about the over- and
under-segmentation of the lines.

Definition 2 (R-matrix). The R-matrix between the GT articles Ag,i, i ∈ ¶1, . . . , M♢ , and the HY articles

9 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Ah,j , j ∈ ¶1, . . . , N♢ , is defined as

R ({Ag,1, . . . , Ag,M } , {Ah,1, . . . , Ah,N }) :=

Ah,1 · · · Ah,j · · · Ah,N

Ag,1

...

Ag,i RBD (Ag,i, Ah,j , Ti)
...

Ag,M

in which RBD (Ag,i, Ah,j , Ti) is the R-value defined in [1]. The set Ti contains tolerance values for each
GT baseline included by Ag,i affecting that minor deviations in the BD are not penalized.

Definition 3 (P -matrix). The P -matrix between the GT articles Ag,i, i ∈ ¶1, . . . , M♢ , and the HY articles
Ah,j , j ∈ ¶1, . . . , N♢ , is defined as

P ({Ag,1, . . . , Ag,M } , {Ah,1, . . . , Ah,N }) :=

Ah,1 · · · Ah,j · · · Ah,N

Ag,1

...

Ag,i PBD (Ag,i, Ah,j , Ti)
...

Ag,M

in which PBD (Ag,i, Ah,j , Ti) is the P-value defined in [1]. The set Ti contains tolerance values for each
GT baseline included by Ag,i affecting that minor deviations in the BD are not penalized.

2.3 R-, P- and F-value for article separation

After the calculation of the R- and P -matrices based on the evaluation scheme for BD, we determine
the maximum entries in these matrices in a greedy manner.

Remark ‘Greedy manner’ means, in this context, that one by one the maximal values of a given matrix
are chosen with following deletion of the corresponding rows and columns. Afterwards, the resulting
values are summed up (see Algorithm 1).

Algorithm 1 Greedy Function

1: procedure GREEDY(B) with B ∈ R
M×N

2: Sum← 0

3: B
′ ← B

4: while B
′ is not empty do

5: b← one of the maximal elements of B
′

6: Sum← Sum + b

7: B
′ ← take B

′ and delete corresponding row and column of b

8: end while

9: return Sum
10: end procedure

Furthermore, it seems to make sense to create a monotony between the BD and the proposed AS

10 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

measure that holds

proposed AS measure ≤ BD measure . (1)

The equality is taken if and only if the articles have been found perfectly. In an end-to-end scenario,
this relation is useful to realize in which step the errors happened (in the BD or in the AS step). One
can compute both measures and compare them. In case of equality, it is obvious that the errors only
occurred in the BD. In case of inequality, the discrepancy between both measures gives an indicator of
how big of an impact the AS has, since its measure is bounded above by the BD measure.

To ensure (1), each row of the R-matrix is weighted by the percentage of the GT article (compared to
all GT articles) corresponding to this row (analogous, each column of the P-matrix is weighted by the
percentage of the HY article (compared to all HY articles) corresponding to this column).

For example, we consider a page with three given GT articles Ag,1, Ag,2, Ag,3 and two detected HY
articles Ah,1, Ah,2. Hence, the R-matrix has the dimension 3 × 2. The set Ag,1 has 10 baselines and
the sets Ag,2 and Ag,3 contain together 30 baselines. Therefore, the first row in the R-matrix (this row
corresponds to the GT article Ag,1) is multiplied by 1/4, since the article Ag,1 includes 25 % of all GT
baselines assigned to articles.

After the explained multiplication/weighting step, the above described Greedy Function is applied on the
resulting matrices. We want to express this process with

GREEDYweighted (R) or GREEDYweighted (P) .

Definition 4 (R-, P- and F-value for Article Separation). The R- and P-value for the generated HY
articles are defined as

RAS (¶Ag,1, . . . , Ag,M♢ , ¶Ah,1, . . . , Ah,N♢) := GREEDYweighted (R) ∈ [0, 1] ,

PAS (¶Ag,1, . . . , Ag,M♢ , ¶Ah,1, . . . , Ah,N♢) := GREEDYweighted (P) ∈ [0, 1] .

Thus, we obtain the F-value for AS, i.e. the harmonic mean of the R- and P-value,

FAS (¶Ag,1, . . . , Ag,M♢ , ¶Ah,1, . . . , Ah,N♢) :=
2 ·RAS · PAS

RAS + PAS
∈ [0, 1] .

The target value is 1 in all three cases.

We think that these three values give us an appropriate tool to evaluate the result of an algorithm
merging a given set of detected baselines to a number of articles. The RBD and PBD values ensure, that
HY articles with too many or too few baselines in comparison with the corresponding GT articles are
penalized with a lower evaluation score.

3 From articles to news items

During the first year of the NewsEye project there was a serious problem with the AS task, namely how to
exactly define an article. This is important for the GT data generation, because everyone has a different
understanding of an article. But consistent GT data is required for machine learning approaches, as

11 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

detailed already within Task T1.3 on ‘Data Generation’, which we hereby quote from Deliverable D1.5,
Section 3.1.1: “One of the advantages of machine learning approaches is that the user - and not the
machine - controls the output of the computing process: the results reflect the GT data set and its rules.
In other words, although we will go for a comprehensive definition of ‘articles’ in the NewsEye project
it is of course possible that libraries or DH groups use their own definitions. As long as the GT data
is consistent it is to be expected that the neural networks will produce models which will achieve good
results nonetheless.”

Therefore, an alternative concept to define newspaper articles in a consistent way was introduced,
namely the ‘news item’. This is the result of a working group within the NewsEye project including
libraries, computer science and digital humanities researchers. From now on, the concept of a news
item will be our internal definition of a newspaper article. Hence, in the following, ‘articles’ and

‘news items’ should be understood interchangeably. The definition follows the International Press
Telecommunications Council (IPTC), which also names its main concept ‘news item’3.

Definition 5 (News item). Based on the considerations of the working group, we want to define the
following set of rules.

• News items are ‘distinct pieces of content’ which can be understood without any context.

– E.g., a news item is a report about the progress of political negotiations, or about a car
accident, or about a story about a crime case at court, but also a job announcement, or a
letter to the editor.

– A paragraph in an article, or a row in the stock exchange table are pieces of the news item,
but are not understandable on their own – they need some context which is provided by the
‘rest’ of the news item to be fully understood.

• A newspaper issue can be seen as a collection of a large number of news items.
• News items are usually separated from each other with some layout or markup, such as titles,

highlighted words, or graphical separators.
• Though newspapers are usually arranged in sections, we do currently not take into account any

hierarchical order of news items.
• News items are most often written by one author or come from one source.

However, we also want to remark that as already mentioned in the above quotation this rule set is
not always unambiguous. This problem occurred particularly during a research stay in August 2019
of a NewsEye project partner of the University of Innsbruck (UIBK-ICH). Digital humanities often work
for their research questions on suitable sub-corpora, i.e. they only need some parts of a newspaper
for their investigations. A ‘distinct piece of content which can be understood without any context’ now
depends on the specific research question (see also [2], Section 4.2), e.g. if you look for information
about a special person you will probably only need one paragraph of a report in which the person is
mentioned and not the whole report itself with a lot of other unimportant facts. So, it seems to be very
hard to have a gold standard definition of a news item. But Definition 5 gives us much more consistency
for GT generation than the broad understanding of an article.

3https://www.iptc.org/std/NewsML-G2/latest/QuickStart-NewsML-G2-ItemBasics

12 of 54

https://www.iptc.org/std/NewsML-G2/latest/QuickStart-NewsML-G2-ItemBasics

D2.7: Article separation (final) CULT-COOP-09-2017

4 Data

4.1 Ground truth format

We use the PAGE format in our workflow which is also used within the Transkribus platform4. All objects
(regions, groups etc.) on, e.g. a newspaper page, are identified with a unique ID within the whole PAGE
file. Regions are defined by their type, outline (polygon), and attributes. Especially the baselines are of
interest for the AS task. For that, a GT file contains among other things:

• the coordinates of the baselines (= polygonal chain) with the corresponding text
• the reading order of the baselines
• the IDs of the articles the baselines belong to

The article IDs are set with the help of a ‘custom tag’. An example for this tag of the PAGE entry for a
single text line/baseline is given by

<TextLine id="tl_1" custom="readingOrder {index:0;} structure {id:a10; type:article;}">.

Of course, there can be baselines having no article ID in the PAGE, i.e. these lines do not belong to an
article but to a ‘None’ class. This special class is not represented with corresponding rows and columns
in the R- and P -matrices.

Remark Under the consideration of the ‘None’ class, the relation (1) should only hold for the BD
measure applied on the ‘not None’ baselines. That makes sense, because inaccurately detected lines
with a ‘None’ tag pull down the BD score but do not affect the AS value. Thus, the AS measure can
exceed the BD measure in such a case.

All in all, the PAGE format gives us a valid and very useful tool to store and evaluate the results of an
LA, automated text recognition (ATR) and/or AS system.

4.2 NewsEye data sets

Data is needed to train and evaluate the various machine learning modules that will be presented in
Section 5. It should contain GT for all three tasks of WP 2, namely for LA, for ATR, and for AS. This
includes baselines, the textual content of their respective text lines, text blocks and article tags, but also
separators and headings.

In year two we used the so called ONBv2 data set. This data set, provided by the Austrian National
Library (ONB), consists of 232 historical German newspaper pages (partially binarized) ranging from
the 19th to 20th century. The newspapers comprise the titles ‘Arbeiter Zeitung’, ‘Illustrierte Kronen
Zeitung’, ‘Innsbrucker Nachrichten’ and ‘Neue Freie Presse’ (for more details see Deliverables D2.5,
Section 4.1 and D2.4, Section 2.4). Originally, we were not satisfied with the quality of the text block and
separator information. Therefore we also manually created an ONB_100 data set for text block detection,
which was also used for the competition in Section 8, and an ONB_120 data set for separator detection.
In year three we removed 2 pages from the ONBv2 data set, because their top half is rotated 180 degrees,
which should normally not be the case. The resulting data set is called ONB_230.

4https://transkribus.eu/Transkribus/

13 of 54

https://transkribus.eu/Transkribus/

D2.7: Article separation (final) CULT-COOP-09-2017

Further GT data was provided by the National Library of Finland (NLF) and the National Library of
France (BnF). They include 200 pages and 184 pages of newspapers, respectively. The first data set
is called NLF_200 and consists of historical Finnish newspapers from the 19th century with the title
‘Uusi Suometar’. From the second data set one page had to be removed since it did not contain any
article tags. The set is called BnF_183 and consists of historical French newspapers from the 19th to
20th century, comprising the titles ‘Le Gaulois’ and ‘Le Matin’. Some example pages can be seen in
Figure 2.

The GT generation process for these data sets was not standardized and we want to briefly present the
details, which were provided by the partners UIBK-DEA.

• ONB_230: The ONB provided ALTO5 files for this data set with most of the necessary information.
These were then manually corrected regarding baseline and text information.

• NLF_200: The files provided by the NLF contained most of the necessary information, but it is not
clear how these were obtained and they contained various layout errors. The baselines and their
text were then redone automatically by our LA and ATR engines to improve their quality.

• BnF_183: The files provided by the BnF contained almost none of the necessary information.
First of all, text block and separator information was added, which was automatically produced
by ABBYY FineReader6, a popular optical character recognition (OCR) engine. Baseline and text
information was then produced by our LA and ATR engines. Finally, text blocks were marked as
headings manually.

• Article tags were done manually on all three data sets by native speakers of the respective lan-
guage.

As outlined above, the quality of the GT data differs between the three data sets. Both NLF_200 and
BnF_183 contain semi-automatically generated data. But whereas in NLF_200 only the baselines and
their text was improved, BnF_183 contains mostly automatically generated information. Also, we did not
have the capacities to manually correct a specific subset, like in the case for ONB_230. Furthermore, the
layouts in NLF_200 and BnF_183 seem to be strictly more complex than in ONB_230. This will show in the
final results.

Before working with the data we pre-processed it by removing every text block that did not contain any
baselines or article tags. ONB_230 contained 16498 text blocks, from which 45 had to be removed (0
without baselines, 45 without article tags). NLF_200 contained 28447 text blocks, from which 764 had to
be removed (739 without baselines, 25 without article tags). BnF_183 contained 73376 text blocks, from
which 10814 had to be removed (10153 without baselines, 661 without article tags). The high amount of
removals is an indicator about the overall quality of the provided GT text blocks.

During year two, three focused project-wide work groups were set up in order to process some key
document collections. For each involved library one data set was chosen to be taken through the whole
NewsEye pipeline. They are called ‘DE-ArbeiterZeitung-migration’, ‘FI-Uusi Suometar-isms’ and ‘FR-
L’Œuvre-gender’ for the ONB, NLF and BnF respectively. These are the first bigger data sets that were
entirely processed by our new updated AS workflow. For simplicity, we will refer to these data sets as
use cases. Table 1 summarizes the data sets used in this deliverable.

5ALTO (Analyzed Layout and Text Object) is an open XML scheme developed by the EU-funded project ‘METAe’ for the descrip-
tion of text and layout information of digitized pages.

6https://www.abbyy.com/de/ocr-sdk/

14 of 54

https://www.abbyy.com/de/ocr-sdk/

D2.7: Article separation (final) CULT-COOP-09-2017

(a) (b) (c)

Figure 2: Example pages for the three GT data sets ONB_230 (a), NLF_200 (b) and BnF_183 (c).

Table 1: NewsEye data sets used in this deliverable.

Data set Language # Pages Type

ONB_230 German 230 GT
NLF_200 Finnish 200 GT
BnF_183 French 183 GT

use_case_DE German 70.418 use case
use_case_FI Finnish 86.308 use case
use_case_FR French 64.724 use case

5 Workflow

In year two we started developing a bottom-up AS workflow that clustered baselines into text blocks,
which were in turn merged into news items. We still follow this two-stage strategy, but have now a more
refined workflow, using a GNN as our central component. We now want to give a brief overview of the
updated workflow and will describe all components in the next section in more detail. How the individual
modules interact with each other and for which modules GT data is required can best be seen from the
two overviews in Figures 3 and 4.

As a first step we extract the text block structure of a given newspaper page based on geometric infor-
mation. For this, we apply a baseline detection in conjunction with an additional baseline clustering to
form text blocks. The current parametrization of this clustering leads to an over-segmentation regarding
the actual news items. We believe this approach is easier to handle than an under-segmentation, since
we can keep merging text blocks in the second step, and not worry as much about finding specific splits.
Therefore, this clustering approach tends to be seen more as a pre-processing step which is fast and
robust, at least as long as we have baselines that are not ranging over multiple columns. Though, this
problem can later be addressed by including separator information.

A motivation for this two-stage strategy is that the computation of the reading order of the single lines

15 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

within the blocks is trivial. Hence, after the first step we are already able to deliver text blocks and
the corresponding text in the right order for further NLP tasks in the NewsEye workflow pipeline like
named entity recognition (NER) or topic modeling, which are covered in work packages WP 3 to WP 5.
However, the reading order between blocks is much more complicated.

To merge the over-segmented text blocks into larger news items, we use a GNN, followed by a final text
block clustering. The GNN is the most crucial junction in our workflow, since many other modules feed
into it, and because it predicts the actual text block relations regarding the news items. To this end, also
semantic content of the extracted text blocks will be used, mainly by means of bidirectional encoder
representations from transformers (BERT) (for more details on BERT see [3] and [4]).

One drawback of this AS workflow are certain dependencies between some modules. This means that
we have to deal with error-propagation in the system, which will affect the quality of the final AS. For
example, the BERT is pre-trained on the text coming from the ATR module. Or, falsely merged baselines
to text blocks can not be corrected in subsequent modules.

6 Modules

6.1 Baseline detection

The BD module is already described in Deliverable D2.4. It takes as input an image of the newspaper
page and outputs a set of baselines and their corresponding text lines, represented by polygonal chains
and polygons respectively. Additionally, if there are baselines that are ranging over multiple columns
which in turn are separated by visible dividers (i.e. separators), the baselines get split. This is described
in Section 6.4.

6.2 Automatic text recognition

The ATR module is already described in Deliverable D2.5. It takes as input a set of text line images of
the newspaper page and outputs their corresponding textual content.

6.3 Text block detection

For text block detection we consider a rule-based approach as well as machine learning approaches.
The former was our starting point in year one, which uses a clustering algorithm to form text blocks. In
year two we did some first experiments on text block detection with machine learning approaches. In
particular, we performed semantic segmentation, i.e. pixel labeling, using an RU-Net, to directly extract
text blocks from newspaper images. In year three, we also applied instance segmentation for the text
block detection task using Mask R-CNNs. However, the results were not satisfactory enough. As a
consequence, we still mainly stick with the clustering approach. But, we will see in the competition
results in Section 8 that the right choice and configuration of an instance segmentation model should
yield better results. Nevertheless, we use the RU-Net as additional input for the later GNN in the form
of abstract visual features.

16 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

T
e
x

t
b

lo
c
k

d
e

te
c

ti
o

n

m
ar

k
“p

ar
ag

ra
ph

”
re

gi
on

s

pi
xe

ll
ab

el
lin

g

H
e

a
d

in
g

d
e

te
c

ti
o

n

m
ar

k
he

ad
in

gs

re
gi

on
an

no
ta

tio
n

S
e

p
a

ra
to

r

d
e

te
c

ti
o

n

m
ar

k
se

pa
ra

to
rs

re
gi

on
an

no
ta

tio
n

B
a

s
e

li
n

e

d
e

te
c

ti
o

n

fin
d

ba
se

lin
es

po
ly

lin
e

co
ns

tr
uc

tio
n

B
a

s
e

li
n

e

c
o

rr
e

c
ti

o
n

co
rr

ec
tb

as
el

in
es

po
ly

lin
e

sp
lit

B
a

s
e

li
n

e

c
lu

s
te

ri
n

g

co
lle

ct
ba

se
lin

es

re
gi

on
co

ns
tr

uc
tio

n

T
e
x

t

re
c

o
g

n
it

io
n

au
to

m
at

ed
te

xt
re

co
gn

iti
on

fu
ll-

te
xt

ex
tr

ac
tio

n

T
e
x

t
b

lo
c
k

s
im

il
a

ri
ty

c
o

m
p

u
ta

ti
o

n

B
id

ire
ct

io
na

lE
nc

od
er

R
ep

re
se

nt
at

io
ns

fr
om

Tr
an

sf
or

m
er

s
–

B
E

R
T

fe
at

ur
e

ge
ne

ra
tio

n

T
e
x

t
b

lo
c
k

s
im

il
a

ri
ty

c
o

m
p

u
ta

ti
o

n

w
or

d
em

be
dd

in
gs

fe
at

ur
e

ge
ne

ra
tio

n

T
e
x

t
b

lo
c
k

m
e

rg
e

e
v
a

lu
a

ti
o

n

G
ra

ph
N

eu
ra

lN
et

w
or

k
–

G
N

N

M
er

ge
-c

on
fid

en
ce

co
m

pu
ta

tio
n

T
e
x

t
b

lo
c
k

c
lu

s
te

ri
n

g

m
er

ge
te

xt
bl

oc
ks

re
gi

on
m

er
gi

ng

Im
a
g

e
s

N
e
w

s
it

e
m

s
»

A
rt

ic
le

s

B
a

s
e

li
n

e
s

T
e
x

t
b

lo
c
k

s

T
e
x

t
b

lo
c
k

s
N

o
n

-M
L

c
o

m
p

o
n

e
n

t

(s
om

e
co

m
m

en
t)

(w
ha

ti
td

oe
s

/y
ie

ld
s)

C
e

n
tr

a
l

w
o

rk
fl

o
w

c
o

m
p

o
n

e
n

t

M
ac

hi
ne

Le
ar

ni
ng

ba
se

d

re
qu

ire
s

tr
ai

ne
d

m
od

el

M
a

c
h

in
e

L
e

a
rn

in
g

c
o

m
p

o
n

e
n

t

(s
om

e
co

m
m

en
t)

(w
ha

ti
td

oe
s

/y
ie

ld
s)

L
e

g
e

n
d

F
ig

ur
e

3:
N

ew
sE

ye
’s

ar
tic

le
se

pa
ra

tio
n

w
or

kfl
ow

17 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

B
a

s
e

li
n

e

g
ro

u
n

d
tr

u
th

fin
d

ba
se

lin
es

po
ly

lin
e

co
ns

tr
uc

tio
n

B
a

s
e

li
n

e
d

e
te

c
ti

o
n

tr
ai

ni
ng

S
e

p
a

ra
to

r

g
ro

u
n

d
tr

u
th

m
ar

k
se

pa
ra

to
rs

re
gi

on
an

no
ta

tio
n

S
e

p
a

ra
to

r
d

e
te

c
ti

o
n

tr
ai

ni
ng

H
e

a
d

in
g

g
ro

u
n

d
tr

u
th

m
ar

k
he

ad
in

gs

re
gi

on
an

no
ta

tio
n

H
e

a
d

in
g

d
e

te
c

ti
o

n

tr
ai

ni
ng

T
e
x

t
b

lo
c
k

g
ro

u
n

d
tr

u
th

m
ar

k
“p

ar
ag

ra
ph

”
re

gi
on

s

pi
xe

ll
ab

el
lin

g

T
e
x

t
b

lo
c
k

d
e

te
c

ti
o

n

tr
ai

ni
ng

T
e
x

t
b

lo
c
k

s
im

il
a

ri
ty

c
o

m
p

u
ta

ti
o

n

w
or

d-
ve

ct
or

tr
ai

ni
ng

T
e
x

t
b

lo
c
k

s
im

il
a

ri
ty

c
o

m
p

u
ta

ti
o

n

B
E

R
T

pr
e-

tr
ai

ni
ng

T
e
x

t
re

c
o

g
n

it
io

n

AT
R

tr
ai

ni
ng

T
e
x

t
b

lo
c
k

s
im

il
a

ri
ty

c
o

m
p

u
ta

ti
o

n

B
E

R
T

fin
e-

tu
ni

ng

A
rt

ic
le

g
ro

u
n

d
tr

u
th

fin
d

ar
tic

le
s

re
gi

on
an

no
ta

tio
n

T
e
x

t
b

lo
c
k

m
e

rg
e

e
v
a

lu
a

ti
o

n

G
N

N
tr

ai
ni

ng

T
e
x

t

g
ro

u
n

d
tr

u
th

pr
ov

id
e

fu
ll

te
xt

te
xt

tr
an

sc
rip

tio
n

w
o

rk
fl

o
w

m
o

d
u

le

tr
a

in
in

g
d

a
ta

L
a
y
o

u
t

S
tr

u
c

tu
re

T
e
x

t

L
a

n
g

u
a
g

e

L
e

g
e

n
d

F
ig

ur
e

4:
N

ew
sE

ye
’s

gr
ou

nd
tr

ut
h

/t
ra

in
in

g
da

ta
fo

r
th

e
ar

tic
le

se
pa

ra
tio

n
w

or
kfl

ow

18 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

6.3.1 Baseline clustering

We developed a simple but robust clustering approach based on the DBSCAN algorithm (density-based
spatial clustering of applications with noise, see [5]), to extract the text block structure of a given news-
paper page based on the geometric information of the previously detected baselines. The main idea
of the algorithm is that, given a set of points in some space, it groups together points that are closely
packed together, marking outliers (noise) that lie alone in low-density regions. This density-based pro-
cedure does not need a hyper parameter determining the number of clusters to be detected. This is
very advantageous, because we do not know a priori how many text blocks are present in the given
page. Note that instead of working with points like in the traditional setting, we work with the bounding
boxes of the respective text lines.

The current parametrization of this clustering leads to an over-segmentation regarding the actual news
items, since it is designed to form text blocks. Additionally, we include any found outliers in the clustering
process, such that every text line is assigned to a text block. This means that even a single line can
also form a text block. We believe this approach is easier to handle than an under-segmentation, since
we can merge text blocks later in the workflow, and not worry as much about finding specific splits.
Therefore, this clustering approach tends to be seen more as a pre-processing step. This approach can
be error-prone to baselines that range over multiple columns, because these will form text blocks over
different columns. Though this problem can later be addressed by including separator information.

After the modified DBSCAN clustering is done, we need to outline the baseline clusters to generate the
final text blocks. To this end, we apply the alpha-shape algorithm (see [6]) on every baseline cluster. The
advantage of alpha-shapes, in contrast to e.g. the convex hull, is that we can enclose the underlying
text more closely, since these shapes are usually not convex. Exemplary results are shown in Figure 6
(a). For a comparison to the text block detection output of the OCR engine ABBYY see Deliverable
D2.4, Section 6.

6.3.2 Semantic segmentation using RU-Net

The second approach that was introduced in Deliverable D2.4 is based on the ARU-Net (see also [7]),
the same network that we also use for other tasks such as baseline, separator and heading detection.
In the following, we will summarize the key elements from Deliverable D2.4 on the ARU-Net.

ARU-Net At its core, the ARU-Net is an extension of the U-Net (see [8]) which is achieved by adding
two key concepts, spatial attention (A) and depth (residual structures (R)). Both modules are optional, so
that you can add both (ARU), only one (AU and RU) or neither of them (U). A more detailed description
is given in the following.

The U-Net is based on fully convolutional networks (FCNs) that use convolutional neural networks
(CNNs) to incorporate the spatial relationships of an image. The main purpose of FCNs is to perform
semantic segmentation (pixel labelling) on an image (see [9]), i.e. predicting a class for each image
pixel. For the text block detection task we have the classes text_block and other. The FCN combines
local features to produce more meaningful high level features using pooling layers. These pooling layers
reduce the spatial dimension of the input. Thus, the result suffers from a coarse resolution. The U-Net7

7The ‘U’ in the name reflects the U-shaped form of the architecture, see Figure 5 (a).

19 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

is derived by applying a deconvolutional network on the subsampled output of the FCN, such that the
output has the same spatial dimension as the input. Additionally, shortcuts between layers of the same
spatial dimension are introduced, which allows for an easier combination of local low-level features and
global higher-level features (see [8]). Finally, as stated above, the ARU-Net extends the U-Net attention
(A) and depth (R). The attention mechanism makes it possible to handle various font sizes, especially
mixed font sizes on a single page. The residual structure together with the skip connections helps
very deep neural networks with error propagation, i.e. makes them still trainable and yield state-of-
the-art results. In Figure 5 the basic architecture of the U-Net and the combination with the attention
network is depicted. The residual connections are defined for each depicted CNN block whereas the
skip connections are depicted as the ‘Idendity’ arrows. For more details see Deliverable D2.4.

However, instead of extracting text blocks from this neural network we use its different feature maps in
the network architecture directly as an input to the GNN to provide abstract visual features tailored to the
text block detection task. The feature maps are depicted as rectangles in Figure 5 (a), where we only
use the output of each two-layer CNN block as input to the GNN. We did experiments on the ONB_100

data set comparing the RU-Net with the ARU-Net where the training images were randomly resized to
an image height of 500 to 1500 pixels while keeping the original aspect ratio. The best performing model
was an RU-Net with a pixel accuracy of 97.03 %, a precision of 98.06 % and a recall of 96.80 %. Example
outputs for the text block detection task can be seen in Figure 6 (b).

6.3.3 Instance segmentation using Mask R-CNN

Instance segmentation is a combination of semantic segmentation and object detection. In semantic
segmentation we give each pixel a label, as is done with the ARU-Nets. Object detection, on the other
hand, is used for detecting specific objects in an image by localizing and classifying them. A combination
of both approaches provides a class label for each pixel in the image with the addition of treating multiple
objects of the same class as individual instances. Thus, in the case of text block detection, we are not
only interested in identifying where text blocks are, but we also want to distinguish between them. This
would overcome the problem of applying a subsequent post-processing to remove uncertainties on
the borders of neighboring text blocks as it is the case for semantic segmentation approaches, see
Deliverable 2.4, Section 3.1.

Mask R-CNN (see [10]) is a specific model performing instance segmentation and is based on the R-
CNN model and its extensions (see [11, 12, 13]), which are solely used for object detection. In addition
to detecting the objects in an image with bounding boxes, Mask R-CNNs perform pixel labeling inside
these bounding boxes.

For the experiments we used a TensorFlow implementation8 using the default configurations. First
results show that for simple pages the approach works fine, sometimes missing a few lines as a result
of too small bounding boxes. For more complex pages, however, there are cases where no text blocks
are found at all. Examples are given in Figure 6 (c).

8https://github.com/matterport/Mask_RCNN

20 of 54

https://github.com/matterport/Mask_RCNN

D2.7: Article separation (final) CULT-COOP-09-2017

(a) (b) (c)

Figure 6: Text block detection results on a simple (top) and a complex page (bottom) with baseline
clustering (a), semantic segmentation using an RU-Net (b) and instance segmentation using
a Mask R-CNN (c).

are the better choice. Our method is using machine learning and an additional post-processing apply-
ing common algorithms like connected component (CC) analysis and morphological operations. The
network and the post-processing steps are described in the following.

6.4.1 RU-Net for separator detection

For separator detection we use the same neural network as for baseline detection (ARU-Net), i.e. we
perform a pixel labeling task on the input image with the classes separator and other. A more detailed
description of the network architecture was given in Deliverable D2.4 and can also be found in [7]. For
training the network we used 100 of the pages from the ONB_120 GT data set and the remaining 20

22 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

for testing. Note that no distinction was made between horizontal and vertical separators in the GT.
The input images were randomly resized to an image height of 880 to 2200 pixels while keeping the
original aspect ratio. We also compared the versions of the network with (ARU-Net) and without (RU-
Net) attention and finally used the best model in terms of pixel accuracy, precision and recall. Overall,
the RU-Net performed slightly better with an accuracy of 94.05 %, a precision of 90.20 % and a recall of
88.11 %.

6.4.2 Post-Processing

Additionally, post-processing is applied to the net output to remove noise, distinguish between horizontal
and vertical separators and to convert the binary pixel map to polygons that can be stored in the PAGE
format. In a first step, a threshold of 0.05 is applied to the net output to convert the confidences to binary
values. In other words, confidences that are greater than 0.05 are mapped to 1 and confidences that
are lower or equal to 0.05 are mapped to 0. We initially set a low threshold to avoid discarding too much
information. Later, in a post-processing step, the noise is removed (see below).

Afterwards, we apply CC analysis to extract a first possible set of separators. The CC algorithm is
used to segment and identify parts in binary images, where two pixels are connected if they have the
same value and are neighbors. To define the neighborhood of a pixel we differentiate between the
four-connectivity and the eight-connectivity. The four-connectivity defines the top, right, bottom and left
pixel as neighbors whereas the eight-connectivity also adds the four diagonal pixels. Brief experiments
yielded the eight-connectivity as a better fitting approach, since too much information was discarded
with the four-connectivity. Connected components that are smaller than 100 pixels are interpreted as
noise and are removed. Note, that for inference we input images that have a fixed height of 1500 pixels.
Experiments on the ONB_120 data set showed, that on average 11 CCs are found per image before the
noise removal. After the post-processing 3 to 4 CCs (34.55% of all CCs) are removed.

In a first version we made no distinction between vertical and horizontal separators. This led to compli-
cated polygons combining multiple vertical and horizontal separators in one and seemed to confuse the
GNN later on, also see Sections 7.5. To fix this, the morphological opening operation is applied to the
CCs with different structuring elements for vertical and horizontal separators. Originally, the opening is
an operation to remove noise from an image and is a successive execution of the erosion and dilation
operations (possibly multiple times). The structuring element for detecting vertical separators has a
shape of HS × 1 where HS = 0.02H and H is the image height, only extracting vertical lines that have
a minimum height of HS . Analogously, the structuring element for detecting horizontal separators has
a shape of 1 ×WS where WS = 0.015W and W is the image width only extracting horizontal lines that
have a minimum width of WS . Again, the parameters HS and WS were determined by brief experiments
on a small data set. Note that also experiments on deskewed images had been done, but did not bring
major improvements.

Finally, with Python modules like Shapely9 and Rasterio10 the CCs are converted to polygons and can
be saved in the PAGE format. In general, there is no option to distinguish between vertical and horizontal
separators in the PAGE format, there is just one SeparatorRegion type. Therefore, we added a custom
tag to the region like in the following example where horizontal and vertical describe the orientation.

9https://github.com/Toblerity/Shapely
10https://github.com/mapbox/rasterio

23 of 54

https://github.com/Toblerity/Shapely
https://github.com/mapbox/rasterio

D2.7: Article separation (final) CULT-COOP-09-2017

An example output of the algorithm can be seen in Figure 7.

<SeparatorRegion id="SeparatorRegion_1" custom="structure {orientation:horizontal;}">

(a) (b) (c)

Figure 7: Separator detection results on a German (a), French (b) and Finnish newspaper page (c).

6.4.3 Baseline correction

As mentioned in Section 6.1, we also use separators to split baselines/text lines that range across
multiple columns. Since columns are delimited from each other by vertical separators, only these are
used for splitting. If the text line already has text assigned to it, one should also make sure that the text
is split as well. We apply the following two approaches.

• If the words have coordinates, assign every word to the left/right of the separator to the left/right
split.

• If there are no word coordinates, split the baseline and copy the text to both splits.

6.5 Heading detection

Another important logical structure type in newspapers are headings. They give us information about
where an article may start. With headings we also include the big title that can be found on the first
page of most newspapers. For heading detection there are also machine learning based approaches
for labeling pixels in an image (see e.g. [14]), rule-based approaches, e.g. taking into account the
height of a text line (see e.g. [16]) and approaches combining both (see e.g. [17]). Our method
combines the initial BD and text block segmentation with a neural network and a modified Stroke Width
Transform (SWT) to classify the headings in an image.

The input of the algorithm are the text lines we get from the baseline detection module (see Section 6.1).
For each text line we want to determine if it is a heading or not. To do so, we combine an ARU-Net with

24 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

a distance transformation of the image. The former performs pixel labeling on the input image. The
latter produces features that can be used to get information about the stroke width and height of the text
in a text line. We describe both sub-modules in the following.

6.5.1 ARU-Net for heading detection

As with separator detection in Section 6.4, we use an ARU-Net with the classes headings and other.
We used the GT from the three data sets introduced in Section 4.2 (ONB_230, NLF_200 and BnF_183).
For testing we used 60 pages including issues from each data set, while using the remaining pages for
training the network. The input images were randomly scaled to an image height ranging from 1200 to
2400 pixels, where we use a fixed image height of 900 pixels in the inference phase. Again, we compared
the network with and without attention and stick with the ARU-Net in the end.

Remark Note, that 900 is not lying in the range the network is trained on, but nevertheless yields good
results compared to other bigger image heights, also achieving a good trade-off between performance
and run-time of the algorithm. One reason why the smaller image height also works well could be due
to the attention that is used in the model, where the input images are further down-scaled a few times.

Then, for each text line we take its bounding box and crop the corresponding sub-image from the
network output. Finally, we calculate the average value over all pixel confidences of that sub-image
which tells us how likely it is that the given text line is a heading.

6.5.2 Stroke Width Transform for heading detection

The SWT (see [18]) is a local image operator that determines for each pixel in an image the width of
the most likely stroke containing the pixel. Thus, the output is an image of the same size as the original
input. In our implementation we adapt the algorithm such that we rather apply a distance transform on a
binary image which calculates the distance to the closest zero pixel for each pixel of the source image.
Here, zero pixel refers to the background (white), since we first invert the image. By considering the
maximum values in this distance transform, we get similar results to the much more compute intensive
SWT. An example output can be seen in Figure 8. Given a newspaper page, for each text line we then
do the following steps.

• Get its bounding box and crop the corresponding excerpt from the distance transformation image.
• Create CCs based on the distance transformation excerpt via connected components analysis.
• Remove all CCs that are too small (minimum width and height of 3 pixel), too big (maximum width

and height of 500 pixel) or with too extreme aspect ratios (up to 8 : 1 or 1 : 8). The respective
parameters were determined by some brief experiments on a smaller data set.

• Based on the remaining CCs compute the text line height by taking the maximum value of all CC
heights and compute the stroke width by taking the median of the maximum values of each CC’s
stroke width.

25 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Figure 8: Example output of the distance transformation where the pixel values refer to the distance to
the closest zero pixel in the source image.

6.5.3 Combination of both approaches

The final decision whether a text line is a heading or not is determined by a linear combination of the
approaches from the last two subsections. This is

• the network output probability for each text line,
• the deviation to the most common stroke width across a page (mapped to the interval [0, 1]) and
• the deviation to the most common text height across a page (mapped to the interval [0, 1]).

Experiments on the GT data, calculating the P -, R- and F1 scores, yielded a linear combination with
a weight of 0.8 for the network output probability and 0.1 for the stroke width weight as well as the
text height weight. This shows us that the machine learning approach gives us much more valuable
information than the SWT features. However, if the deviation to the most common stroke width or
text height across a page is very large (which is reflected by values close to 1 after scaling to the
interval [0, 1]), we then classify the text line as a heading regardless of the value of the network output.
Conversely, if the network probability is very high, we rely only on this information. In general, a text line
is considered a heading if its corresponding final heading confidence value succeeds a threshold of 0.4.
Overall we reach an F1 score of 66.53 % with a precision of 82.14 % and a recall of 55.91 % where we
are more interested in a high precision value since false positives could result in wrong merges of news
items later on. An example output of the algorithm can be seen in Figure 9.

Remark In the PAGE format headings are defined at text region level. In cases where a heading is
part of a bigger text region mostly containing non-heading text this would lead to problems. If a heading
is part of such a paragraph text region we either can only say, that the whole paragraph is a heading or

26 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

we would loose the heading information when declaring the region as non-heading. Either case would
lead to problems in the GNN later on.

To overcome this issue we also store the information on text line level using the custom tag, ending up
with a more fine-grained option. If at least 80 % of the text lines in a text region are headings we define
the whole text region as a heading. Two examples for defining the heading on text region level and on
text line level in PAGE are given in the following.

<TextRegion id="tr_1" custom="readingOrder {index:0;}" type="heading">

<TextLine id="tl_1" custom="readingOrder {index:0;} structure={semantic_type:heading;}">

(a) (b) (c)

Figure 9: Heading detection results on a German (a), French (b) and Finnish newspaper page (c). One
can see that some headings, e.g. the big titles, are not found, which is due to the low recall
value. However, in these examples we have no false positive examples, which reflects the
higher precision value.

6.6 Content based features for text block relations

During the NewsEye project work it became more and more clear that in order to properly get adequate,
consistent news items from merging text blocks, one has to comprise also the similarity of their content.
This amounts to calculating NLP based features, which mathematically are weighted relations between
text blocks. We will think of the weights as estimates for a certain text block similarity.

6.6.1 Word vector based text block similarities

The first approach is to employ usual word embeddings. This has been investigated and implemented
in a cooperation between the partners UROS, UIBK-ICH and ULR. We used the rather straightforward
standard idea: to every text block, assign an embedding as the (arithmetic) mean of all (non stop-word)

27 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

word embeddings, and calculate the cosine of two block vectors for assigning a text block similarity to
every pair of text blocks. For the underlying word embeddings, freely available sources (see e.g. NLTK
Project11) were used. Note that these embeddings are language specific.

These features turned out to be moderately helpful. In practice, they seem not to provide better results,
when the structure-based features are combined with the BERT features (Section 6.6.2). On the other
hand, such features can be calculated easy and fast. Word vector based text block similarity features
shall remain in the toolbox for first and fast starting results on new and less extensively prepared data
sets. As soon as time and resources allow for preparing and using the much more advanced BERT
technologies, those should be preferred.

6.6.2 BERT based text block similarities

The second approach is to use a BERT model to generate such features. These are context-based
language models that are first pre-trained on unlabeled data and then fine-tuned to a specific task on
labeled data.

Figure 10: General architecture
of a BERT model.

As shown in Figure 10, the basic BERT model consists of N similar
encoder layers connected in series, each consisting of a multi-head
attention layer, followed by a feed-forward layer. Each time a feed-
forward layer or multi-head attention layer is applied, the residual in-
put is added back to the actual output and a layer normalization is
applied to the result. In order for the BERT model to be able to pro-
cess text, the text must first be converted into a sequence of tokens
by means of a tokenizer, so that this can then be converted into a
sequence of vectors by means of a trainable embedding. Since the
encoder layers consist only of attention layers and feed-forward lay-
ers, the BERT must be given additional information about the position
of each element in the input sequence. This is done via a so-called
positional encoding, by adding a fixed position vector to each embed-
ding vector of the input sequence. For a more detailed description of
the BERT architecture see [3] and [4].

For the feature generation we first did a pre-training of the BERT
analogously to [3] on the Mask-Language-Model (MLM) task and the
Next-Sentence-Prediction (NSP) task. The MLM task first tokenizes
the text input with a subword tokenizer, then 15 % of the tokens are
masked randomly. Of these masked tokens, 80 % are replaced by a
special masked token, 10 % are replaced by a randomly chosen other
token, and the remaining 10 % keep the original correct token. The
goal of the MLM task is to correct the masked tokens to their original state, which is only possible by
‘understanding’ the language and in turn learning of a robust language model. Claiming that language
models understand language is somewhat controversial (see e.g. [19]), but that is out of the scope of
this report. The goal of NSP is to learn if two parts of text belong to the same document or came from
different documents. For each of the two pre-training tasks an additional classification layer is added on

11https://www.nltk.org/index.html

28 of 54

https://www.nltk.org/index.html

D2.7: Article separation (final) CULT-COOP-09-2017

top of the architecture. In this way both tasks can be trained with a combined loss.

For fine-tuning, the goal is to determine whether two text blocks belong to the same news item. Normally,
only the pre-trained layers as shown in Figure 10 are reused for fine-tuning. But because the NSP task
from pre-training is already pretty similar to the question of whether two text blocks belong to the same
news item, we reuse the classification layer of the NSP task here. For training, GT is needed, where we
have example pages that contain information about which text blocks belong to the same news item. A
particular input sample consists of 2 text blocks that are separated by a separator token and entered
into the BERT. If the two text blocks are too long to process for the BERT, i.e. the maximum permissible
sequence length is exceeded, a corresponding number of tokens are cut out of the text blocks in the
middle so that the maximum possible sequence length can be maintained again. After the fine-tuning is
done, the BERT model can be used to predict text block similarities on unseen data.

6.7 Graph neural network

In the last year we introduced the general concept of GNNs. These are artificial neural networks that
can be applied to graph data, which is able to represent a set of objects with complex relationships and
interdependency between them (for a survey on GNNs see [20]). Here we want to focus on how we
integrate them into our AS workflow. The goal is to solve a relation prediction task. Given a set of text
blocks on a newspaper page, the GNN should predict which of them belong to the same news item. This
is realized as an edge classification scenario. The GNN computes confidence scores for every possible
pair of text blocks, which are interpreted as the probability for two particular text blocks to belong to the
same news item. The text blocks are provided by the text block detection module (Section 6.3). This
is a highly unbalanced classification scenario, because a text block belonging to a particular news item
has negative relations to every text block in different news items.

Since GNNs work on graph data, we need to create a graph representation of a newspaper page, where
relevant objects are represented by nodes and their relations by edges between them. Nodes and edges
can then be enriched with various features to increase the representational strength of the data. For the
graph construction on a particular newspaper page, we first match the text blocks to nodes. Secondly,
a Delaunay triangulation (see [21]) between the nodes is used to build the edge set of the graph.
In particular, the center points of each text block are matched to the nearest vertex of an underlying
regular 50× 50 pixel grid, to create a more homogeneous layout for the triangulation. For n nodes, this
(Delaunay) graph contains O(n) edges, which makes it computationally more feasible, in comparison to
e.g. a fully-connected graph which contains

(

n
2

)

edges. Any missing long-range dependencies should
not be a problem, since feature information flows over multiple time steps in a GNN.

The next step is to assign features to the nodes and edges. We include both handcrafted features as
well as machine-learning based features. Many of the previously introduced modules are used for this.

Nodes get assigned geometric features that represent the position and size of their respective text
block. Additionally, we use a distance transformation over the newspaper image to approximate the
stroke width and the height of the text for each text block and assign those features to each node.
Furthermore, the output of the heading detection module (Section 6.5) is used to assign a feature,
indicating whether a node contains a heading or not. Finally, an RU-Net trained on text block detection
(Section 6.3.2) is used to extract abstract visual features over the bounding box area of each text block.

Edges get assigned separator information and features containing semantic context. The output of

29 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

the separator detection module (Section 6.4) is used to assign two features, indicating whether a pair
of connected nodes is separated by a horizontal and/or vertical separator. This distinction is useful,
since a horizontal separator is a way stronger indicator for two text blocks to not belong to the same
news item. This can often times be seen, when a single news item stretches over multiple newspaper
columns, which are still split by vertical separators. This scenario is illustrated in Figure 11. Additionally
we use a BERT (Section 6.6.2) to integrate semantic context between two text blocks. In particular, it
predicts a probability that those text blocks belong to the same news item, solely based on their textual
embeddings. This confidence score is then assigned as the final edge feature. This is even done for
the training process of the GNN. There, we use the trained BERT to generate its predictions on the
GT data, since the actual targets used for the BERT fine-tuning are the article relations between the
text blocks. These are the same targets the GNN is trying to predict. If we would use those as edge
features while training, it would be possible for the GNN to just focus on this one particular edge feature
and disregard everything else. By using the BERT predictions as training features, we introduce enough
uncertainty into the feature, so that the GNN can not solely rely on it.

Figure 11: Impact of vertical and horizontal separators (marked as purple regions). A distinction is
useful, since text blocks belonging to the same news item (uniformly colored) can still be split
by vertical separators.

At this point a GNN is applied for the feature extraction. First, nodes aggregate features from their
neighboring nodes and edges, employing an attention mechanism. Second, they update their own state
with a Long Short-Term Memory. These steps are repeated for multiple time steps to allow information
flow over longer paths in the graph. Afterwards, a binary edge classifier uses the network features to
output a confidence that two specific nodes belong together. When this classifier is applied on every
possible node pair, the result is a fully-connected confidence graph in which nodes represent text blocks
and the edge weights represent the probability that two nodes belong to the same news item. This
confidence graph is the input to the final module in our AS workflow. The process of the GNN module
is depicted in Figure 12.

As mentioned in Section 4.2, the low amount of proper GT data is a problem. To artificially increase the
number of training samples for the GNN, we use data augmentation on the generated features. Though,
this is limited to geometric feature augmentation of the text blocks, since generating new sophisticated

30 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

newspaper pages in the style, language and layout of the respective data sets would be an extremely
challenging task in its own. The geometric augmentation modules include random scaling (horizontally
and vertically independent), random rotation (coherent across all nodes) and random translation (combi-
nation of coherent part across all nodes and incoherent part for each individual node). For each training
sample, these modules are applied independently with a probability of 50 %. This does not generate
new proper newspaper pages, since the textual content, the general layout as well as the information
about headings and separators stay the same, but it at least introduces some more variations in the
training process.

As mentioned in Section 5, the GNN depends entirely on the outputs of the previous modules in the
AS workflow, and in turn is prone to an error propagation. Especially the text block clustering is a
crucial step, since once a text block is formed, it will not be split further down the workflow. These text
blocks represent the basic objects that the GNN is working on and that get clustered to news items
afterwards (Section 6.8). Originally, there was an idea to build more of an end-to-end network, which
operates directly on baselines. This would prevent an error propagation from the text block detection
module. Though, some preliminary experiments showed that this approach is currently computationally
not feasible, since many of the relevant newspaper pages include thousands of baselines. Therefore,
this approach was not further pursued.

(a) (b) (c)

Figure 12: GNN module process. For the graph construction phase, nodes are matched to text blocks
(a) and edges are built as a Delaunay triangulation over the nodes (b). The GNN output is a
fully-connected confidence graph (c). Note that only high confidences are visualized.

6.8 Text block clustering

Since the GNN only outputs a confidence graph, some sort of post-processing is needed as a final
step in the AS workflow to form distinct news items. The idea is to cluster the text blocks, based on
the information contained in the confidence graph. We use three different approaches to tackle this
clustering problem.

Our first approach is a modified DBSCAN algorithm. Another version of the DBSCAN algorithm

31 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

was already used in Section 6.3.1 to cluster baselines to text blocks. Here, instead of working with a
distance metric, we define the neighborhood of a node as the set of nodes whose edges satisfy a certain
confidence threshold in the graph. During the algorithm, we only allow new nodes to get picked up by an
existing cluster if their average confidence over all other nodes in that cluster meets a second threshold.
This change makes the algorithm more robust against false positives in the confidence graph, which
would otherwise result in multiple clusters getting merged by a single edge with high confidence.

Our second approach follows a hierarchical clustering analysis. In particular, an agglomerative clus-
tering method is chosen, i.e. a bottom-up approach, where each text block starts in its own cluster and
the closest pairs of clusters are merged continuously, until one big cluster is created. The end result is
a strict hierarchy, since the structure is only coarsened during the algorithm. To decide which clusters
should be combined, a cluster distance needs to be defined. We chose the distance of centroids as the
criterion to specify the similarity of clusters. Once the hierarchy is formed, a distance threshold needs
to be chosen, which determines at which point in the hierarchy the clusters are extracted. Brief exper-
iments on a smaller data set suggested that a threshold THC based on the mean (dmean) and median
(dmedian) distances over the merged clusters works best, specifically THC = (dmean + dmedian)/2.

Our third approach is a straightforward greedy clustering algorithm. This is best justified by interpreting
the GNN edge (confidence) weights as the probability that the two incident (text block) vertices belong to
the same (news item) cluster. Then, assuming their independence implies, that given the GNN outputs,
the probability of a certain clustering amounts to the product of all edge weights over intra-cluster edges
times the product of all (1-edge weight)s over inter-cluster edges. This respectively its logarithm is a
natural objective function to be maximized over all possible clusterings.

This is a typical problem of discrete optimization, where the number of all possibilities is far too large for
searching them all. Hence, we might follow a traditional greedy strategy. For this, we start with the finest
partition, i.e. every single vertex forms a single cluster. Then we join clusters step-by-step, such that in
every step one merge is chosen which gives the maximal increase of the above objective function. The
procedure stops as soon as no merge leads to an increase anymore.

Compared with the exponential overall number of clusterings, this strategy is of polynomial complexity
in the number of (text block) vertices. Thus, it is realistic for practical computations, although, as it is
known, taking the local (step-wise) optimum does not need to lead to a global optimum.

The text block clusters formed by any of the three mentioned algorithms represent the final news items
(articles). Figure 13 shows the resulting clustering on the previous example, using the greedy clustering
approach. The results for the other two approaches are not shown, since they are almost identical on
this particular example. In fact, the clustering algorithms are mostly interchangeable, which is supported
by the results shown later on in Table 6.

7 Experiments and results

In this section we want to present the major experiments and results obtained during year three. This
mainly includes quantitative results from the BERT, the GNN and the final AS output. Minor experiments
for hyperparameter tuning on the various modules are excluded.

32 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

(a) (b)

Figure 13: Text block clustering to news items. The greedy clustering algorithm uses the graph confi-
dences (a) to form text block clusters (b). Note that only high confidences are shown in (a).
Text block clusters are uniformly colored.

7.1 Semantic context with BERT

As mentioned in Section 6.6.2, the final goal for the BERT (fine-tuning) is to determine whether two
text blocks belong to the same news item. For pre-training we used the raw text predictions from the
ATR module (Section 6.2) on the three use-case data sets described in Section 4.2. For fine-tuning
additional AS information is necessary. Here we use the three GT data sets described in Section 4.2.
From each data set 10 % of the pages were randomly chosen for testing.

Experiments showed that BERT models trained on a single language performed the best. The underly-
ing architecture for all of these models is the same, but we used a separately trained instance for each
of the three data sets. With these mono-lingual BERTs we got the results depicted in Table 2 for the
fine-tuning. It can be seen that the quality for the ONB_230 and BnF_183 data sets is relatively similar. It
is not entirely clear why the BERT performs worse on the NLF_200 data set. This could be due to the
quality of the ATR, which impacts the pre-training performance, and in turn the fine-tuning results as well
by means of the embeddings. In the Finnish language the words tend to be longer, i.e. consist of more
characters on average. Maybe the BERT has harder time with longer words, because they decompose
into more tokens. More extensive experiments are necessary to explain this discrepancy.

Table 2: Fine-tuning results of the BERT for the AS task.

Data set Accuracy [%] F1 [%]

ONB_230 94.16 76.06

NLF_200 95.81 54.65

BnF_183 93.03 77.83

33 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

7.2 GNN training with pseudo ground truth

Originally GT data from the ONB_230 data set contains information about the basic layout (baselines
and text blocks), the contained text, separators and distinctive headings. These (and other) features
will be used by the GNN for the training process. Later on, when working on actual use cases, these
features need to be generated by other modules in the AS workflow, in order to be available for the GNN
prediction. This means that there is a certain discrepancy between the data the GNN is learning from
and the data on which the GNN makes predictions. It is easy to imagine, that especially the text blocks,
the basic building blocks for the graph construction, will differ between the GT data and the results from
the text block detection module. Partly missing separators or headings are also likely, since no module
works perfectly accurate. This creates an additional difficulty for the GNN, where it not only has to try
to solve the relation prediction task on data similar to the GT data, but also generalize and adapt to
(erroneous) data coming from previous modules.

One idea is to create a kind of pseudo GT data set which incorporates results from these modules, so
the GNN can learn and adapt to the kind of features it will later have to rely on. Adding pixel labeling
based separators (Section 6.4) to the GT text lines can generate new baselines via splits. In this case
the previous text is split onto the two new baselines and both get assigned the original article tag.
Text blocks are formed by using the baseline clustering algorithm (Section 6.3.1) and their article tag is
assigned by a majority vote of their respective baselines in the GT data, since it is possible for a text
block to contain text lines of different news items after the clustering process. Headings are assigned as
described in Section 6.5. Both data sets are divided into the same (randomly chosen) training, validation
and test sets with 190, 20 and 20 pages respectively. The two data sets can be summarized by Table 3.

Table 3: Two training sets for the GNN. ONB_230_GT is the classical handmade GT. ONB_230_PS is
pseudo GT which uses the GT text lines, but then incorporates features about separators, text
blocks and headings from other modules (PL = Pixel labeling, BC = Baseline clustering).

Data set Baselines & Text Separators Text blocks Headings Articles
ONB_230_GT GT GT GT GT GT
ONB_230_PS GT PL BC PL Vote

Models were trained and evaluated on both data sets. Since we are dealing with a classification task, a
threshold T needs to be set, that determines at what confidence level a prediction is considered positive
(two text blocks belong to the same news item) or negative. A standard threshold would be 0.5, i.e. we
consider the most probable class (in a conventional sense). The higher the threshold, the less positive
relations are predicted. Note that this is only necessary to compute the various measures for the GNN
output, in order to compare the different results. In the context of our AS workflow, we do not make a
binary decision, but instead work with the confidence graph itself in the text block clustering module. In
the upcoming results, we chose the threshold T which maximizes the corresponding F1 score. Looking
at Table 4, the experiments showed the superiority of the GNN model trained on the ONB_230_GT data
set for the validation and test sets. From this point on we only conducted experiments using the GT
data, instead of incorporating more pseudo GT.

7.3 GNN generalization capabilities

In year two we worked internally solely with the ONBv2 data set. Now we have additional data sets
available for training, namely NLF_200 and BnF_183. These data sets contain newspapers from different

34 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Table 4: Evaluation of GNNs trained on different training sets. The model name corresponds to the data
set it was trained on. Results are chosen based on best F1 score (at threshold T , in %).

Model Data set
ONB_230_GT ONB_230_PS

T P R F1 T P R F1

GNN_onb_gt
train 0.64 92.8 95.4 94.1 0.30 75.3 79.5 77.3

val 0.91 88.0 83.2 85.5 0.95 83.3 75.9 79.4

test 0.78 89.0 84.2 86.5 0.64 84.3 84.1 84.2

GNN_onb_ps
train 0.70 83.8 83.0 83.4 0.66 89.8 90.3 90.1

val 0.88 77.8 82.2 79.9 0.94 79.2 78.6 78.9

test 0.86 81.6 79.6 80.6 0.80 75.1 83.0 78.9

time periods and with different languages and layouts. Since scarcity of AS GT data is one of our major
problems, it makes sense to try to train joint GNN models on multiple of those data sets. Ideally the
GNNs will be able to generalize across the different data sets. We are interested in seeing whether
these combination of models can perform on par with models trained for specific newspapers or even
benefit from the additional data variations.

To this end, we created a cross-evaluation setup, where we trained GNNs on every possible combination
of the three GT data sets and evaluated them on the relevant training, validation and test sets. These
subsets were randomly chosen. For ONB_230 the split is identical to the previous section (190, 20, 20

pages). The NLF_200 data set was split into 160, 20, 20 pages and the BnF_183 data set was split into
149, 17, 17 pages for training, validation and testing respectively. Note, that the GNNs that are trained
on multiple data sets still obtain their semantic edge features from multiple mono-lingual BERTs. This
is due to the fact that experiments showed worse overall results on multi-lingual BERTs compared to
mono-lingual ones. Furthermore, a single heading module was used for the experiments, which was
jointly trained on all GT data sets. Of the remaining modules in the workflow, baseline detection, text
recognition, separator detection and text block detection (for visual features) were only trained on the
ONB_230 data set, since it contained the GT of best quality.

The results are depicted in Table 5. Models specialized on a particular training set generalize decently
well to other data sets, but do not outperform the other respective specialized models. E.g., GNN_o
performs well, but not better than GNN_n, on NLF_200. The overall performance on BnF_183 is worse
compared to ONB_230 and NLF_200. This can mostly be explained with the quality of the underlying GT
data. First of all, the BnF_183 GT was partly semi-automatically generated and secondly, it contains
way more text blocks than the other two data sets. Furthermore, it can be seen that the models perform
considerably worse on the BnF_183 validation set compared to its test set. This is mainly due to the fact
that the validation set contains more complicated newspaper pages. Since the subsets were randomly
generated, the average total number of text blocks in the validation set was found to be higher (407

vs 309). In particular, it contains two pages about the stock market with a lot of tables and over 1000

text blocks each. These have a big impact on the overall results, since the subsets only contain 17

pages each. Generally, all specialized models slightly overfit on the training data, which indicates that
additional GT data (of sufficient quality) would be useful.

Regarding multi-models (i.e. models trained on more than one data set), the results show that the GNNs
can profit from the additional training data. The best test results (marked in bold in Table 5) for both
NLF_200 and BnF_183 were obtained with multi-models. Though, this is a very minor benefit compared

35 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

to the specialized models and it is still in the range of possible statistical errors, since these are the
results from a single training run (due to time constraints). It is also noticeable, that the multi-models
trained on two data sets usually perform better on the third excluded data set than their specialized
counter parts. E.g., GNN_ob performs better on NLF_200 than GNN_o and GNN_b. This is another
indication, that additional training data helps generalization purposes. This can also be seen in the
final model (trained on all three training sets), since it yields good results across the board and would
probably be the best candidate to handle new unseen newspapers.

Note that the high variance in optimal thresholds T should not be of concern, since looking at more
internal data shows, that for more average thresholds, i.e. near 0.5, the F1 scores only drop by a small
amount.

Table 5: Cross-evaluation of GNNs trained on different training sets. The model name corresponds to
the data set(s) it was trained on (o = ONB_230, n = NLF_200, b = BnF_183). Specialized models
are highlighted in grey. Results are chosen based on best F1 score (at threshold T , in %). Best
performance for each test set is marked bold.

Model Set
ONB_230 NLF_200 BnF_183

T P R F1 T P R F1 T P R F1

GNN_o
train 0.62 94.2 96.2 95.2 0.87 74.7 70.6 72.6 0.66 60.6 72.9 66.2

val 0.89 87.7 84.5 86.1 0.91 77.7 70.1 73.7 0.78 42.3 59.0 49.3

test 0.76 86.3 86.4 86.4 0.88 68.0 71.6 69.7 0.74 61.1 58.4 59.7

GNN_n
train 0.05 47.0 47.4 47.2 0.94 89.7 90.2 90.0 0.22 60.9 59.9 60.4

val 0.91 70.3 69.2 69.8 0.91 82.8 90.8 86.6 0.30 51.2 40.9 45.5

test 0.87 74.5 74.6 74.6 0.91 89.3 83.6 86.4 0.46 70.5 71.7 71.1

GNN_b
train 0.05 47.1 63.8 54.2 0.94 67.1 68.3 67.7 0.82 90.6 91.3 90.9

val 0.97 70.1 69.7 69.9 0.91 58.5 62.6 60.5 0.82 51.5 84.5 64.0

test 0.90 59.6 64.1 61.8 0.91 63.4 67.8 65.6 0.85 74.9 71.8 73.3

GNN_on
train 0.53 88.9 90.9 89.9 0.91 87.9 86.4 87.1 0.50 63.6 64.3 64.0

val 0.92 86.6 84.0 85.3 0.88 84.1 89.0 86.5 0.50 45.2 51.5 48.1

test 0.86 85.7 86.1 85.9 0.87 87.7 85.4 86.5 0.62 75.5 69.2 72.2

GNN_ob
train 0.14 70.7 83.2 76.5 0.93 76.7 73.0 74.8 0.71 83.7 86.6 85.1

val 0.91 85.9 79.8 82.7 0.93 79.6 79.4 79.5 0.83 56.0 69.7 62.1

test 0.71 85.6 84.9 85.3 0.92 74.8 71.4 73.1 0.75 71.6 70.4 71.0

GNN_nb
train 0.05 44.9 65.8 53.4 0.93 87.6 87.5 87.6 0.68 82.6 87.0 84.7

val 0.96 76.0 69.1 72.4 0.90 81.8 86.1 83.9 0.86 54.8 80.7 65.2

test 0.95 77.7 71.2 74.4 0.91 88.3 85.1 86.6 0.75 74.1 71.3 72.7

GNN_obn
train 0.22 67.3 73.9 70.4 0.92 85.1 84.3 84.7 0.63 78.5 83.5 80.9

val 0.90 83.9 81.9 82.9 0.90 81.4 87.0 84.1 0.75 54.8 78.9 64.7

test 0.84 85.3 82.9 84.1 0.88 81.3 83.1 82.1 0.75 76.4 70.9 73.6

7.4 News item clustering

Finally, the output of the GNNs needs to be clustered in order to form the actual news items. We com-
pare all three clustering algorithms (see Section 6.8) on each GT data set, by evaluating our introduced
AS measure, using the specialized GNN models from the previous section. We chose the specialized
models to have more comparable results and because the differences to the best performing models
was only marginal. For the hierarchical clustering, the threshold described in Section 6.8 was used.

36 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

For the modified DBSCAN clustering, we chose high confidence and clustering thresholds (see Sec-
tion 6.8) of 0.8 each, which are based on the findings in Table 5. The results in Table 6 suggest that
there is no clear favorite amongst the different clustering algorithms. Though, more internal data shows
that the choice of the hyperparameter thresholds can have a significant impact on the resulting clusters.
In contrast, the greedy approach is simple and does not rely on any hyperparameters. It also has the
best test results on ONB_230 and NLF_200. All clusterings perform better on the training sets, which
is explained by the slight overfitting of the GNNs. The overall performance on the different data sets
fits our assessment of the quality of the underlying GT data, i.e. we see a drop in performance from
ONB_230 over NLF_200 to BnF_183. One can conclude that the remaining errors are due to inaccurate
confidence predictions from the GNNs. Nevertheless, compared to our original rule-based baseline
clustering method, we can record relative error improvements (i.e. comparing 1− F1 scores) of 73.7 %,
49.6 % and 48.6 % for the test sets of ONB_230, NLF_200 and BnF_183 respectively.

Table 6: News item clustering performance (F1 score from AS-measure in %) on all three GT data sets
for different clustering algorithms. The relative error improvements refer to (1−F1) scores. Best
performance for each overall data set and respective test set is marked bold.

Algorithm
ONB_230 NLF_200 BnF_183

train val test all train val test all train val test all

Greedy 85.2 85.5 85.3 85.2 80.0 77.7 75.7 79.3 69.9 60.0 65.2 68.5

DBSCAN 88.2 80.0 83.0 87.1 83.6 78.6 75.4 82.3 75.5 66.5 69.7 74.1

Hierarchical 85.5 84.5 84.4 85.4 86.7 77.9 75.7 84.8 73.1 65.3 69.0 72.0

Baseline cluster-
ing [old]

54.8 49.9 44.2 53.4 51.7 50.0 51.8 51.6 38.4 36.7 41.1 38.5

Relative error im-
provement (in %)

73.9 71.1 73.7 72.3 72.5 57.2 49.6 68.6 60.2 41.1 48.6 57.9

7.5 Internal user satisfaction

After having computed the first 1000 pages from the use_case_DE data set entirely in UROS’ AS work-
flow, we started a short round of collecting qualified user feedback. For this, we arbitrarily picked 10

pages which have never been used for any training and/or GT production. For those pages, all 3 differ-
ent clustering methods were applied.

These results were presented to DH specialists from NewsEye partners of the University of Innsbruck
in DH (UIBK-ICH) and the data specialists of UIBK-DEA. We received valuable feedback on the overall
quality and specific errors along with a ranking between the 3 clustering methods.

The main results are:

• There is a wide quality range from fairly well separated pages to pages with far too many failures,
which obviously should not appear.

• Essentially, errors are already included in the GNN confidence output. Mainly, they are clearly
visible and due to not considering horizontal separators well enough.

• The 3 clustering methods do not lead to essentially different results. If any at all, the greedy
method seems to have slight advantages.

From this, we draw the following conclusions:

37 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

• Much more weight should be given to the horizontal separators. Since this requires to re-train
the GNN models and re-compute all subsequent workflow steps, we plan a second round of
processing the use-case data sets at the very end of the project.

• This might even lead as far as forbidding to join text blocks across such horizontal separators.
This idea remains to be tested for real application scenarios.

• As for the 3 different clustering methods, we restrict all further processing within this project work
to use the greedy method only.

For further user feedback loops on the AS quality, we apply the per-page-evaluation scheme proposed
by partner UIBK-DEA [22]:

1. true number of articles
2. number of correctly separated articles
3. number of correct article beginnings
4. number of wrong splits
5. number of wrong merges

From this, various global measures (relative to 1.) could be derived according to specific needs. Here, it
seems to be important to include also correct article start lines as (e.g.) ‘half’ correct, and to distinguish
between wrong splits (less serious) against (really serious) wrong merges.

8 Competition on text block segmentation

We organized a competition at the ICPR202012 named ‘ICPR2020 Competition on Text Block Segmen-
tation on a NewsEye Dataset’. The conference was held online from January 10th to 15th, with the
competition and its results presented on January 14th in a one hour slot on the underline platform13.
To recap, the participants had the task to cluster baselines into text blocks in two different tracks, one
simple and one complex track each having 40 pages training data and 10 pages test data. Overall, of
a total of five registrations, three participants took part with two machine learning based approaches
applying instance segmentation and one rule-based approach. The participants were:

• Cinnamon AI and Ho Chi Minh City University of Technology (HCMUT),
• École des Hautes Études commerciales Montreal (HEC) and
• Lenovo Research and South China University of Technology (SCUT),

with HCMUT using the rule-based method and the other two teams using the machine learning algo-
rithms.

For the simple track, everyone submitted their results, while for the complex track, only the machine
learning approaches participated. The results in Table 7 are copied from the original competition paper
where we provided a baseline method performing a simple clustering on the baselines. The F-values
are averaged over the 10 pages of the corresponding test sets. A more detailed description of the
competition tasks and the methods of the teams can be found on the competition website14 and in the
competition paper [23].

12https://www.micc.unifi.it/icpr2020/
13https://underline.io/
14https://www.mathematik.uni-rostock.de/forschung/projekte/citlab/projects/text-block-segmentation-competition-icpr2020/

38 of 54

https://www.micc.unifi.it/icpr2020/
https://underline.io/
https://www.mathematik.uni-rostock.de/forschung/projekte/citlab/projects/text-block-segmentation-competition-icpr2020/

D2.7: Article separation (final) CULT-COOP-09-2017

Table 7: Results of the participants (including our baseline method) in terms of the in Section 2 pre-
sented F-value on the test sets. The winning teams are shown in bold face.

F-value simple track F-value complex track

UROS baseline 0.934 0.768

Cinnamon AI & HCMUT 0.999 -
HEC 0.995 0.887

Lenovo Research & SCUT 0.997 0.954

9 Prolongation Update

We formulated two goals for the prolongation phase of the NewsEye project at the end of M36 for
further sustaining and disseminating the results presented to this point. This includes the end-to-end
processing of data sets suitable for testing and the consolidation of the implementation source code for
further and public software integration.

Regarding the first point, we processed four big data sets covering two new languages: English and
Swedish. More details can be found in Section 9.1. Addressing the software integration in the scope of
the collaboration of NewsEye with READ-COOP15, we have started incorporating the software modules
into the Transkribus platform. The integration in the backend is complete so that the AS workflow
can be executed in Transkribus. However, an application in the frontend does not yet make sense for
various reasons. To name an example, an even more intensive exchange is needed between UROS
and READ-COOP’s Transkribus team together with partner UIBK-DEA to clarify questions about e.g.
which hyperparameters can be set by user in the end. In particular, this implies that further steps are
beyond the scope of this project. New experiments were also made in collaboration between project
partners. The details can be found in the following subsections.

9.1 New data sets

In addition to the three big key use cases from Section 4.2 covering newspapers in German, Finnish
and French, we processed three Swedish document collections including the titles ‘Åbo Underrättelser ‘,
‘Hufvudstadsbladet ‘ and ‘Västra Finland ‘ covering 252, 732 pages overall and a bilingual (English and
French) newspaper called the ‘New York Herald‘ covering 84, 765 pages. An overview is given in Table 8
and example pages can be seen in Figure 15.

Table 8: Data sets processed in the NewsEye prolongation covering four newspaper issues.

Data set Newspaper Language # Pages Type

use_case_EN New York Herald English & French 84, 765 use case
use_case_SV 252, 732

→֒ Åbo Underrättelser Swedish 103, 216 use case
→֒ Hufvudstadsbladet Swedish 137, 280 use case
→֒ Västra Finland Swedish 12, 236 use case

Since no GT was available for these data sets, we applied the various models trained on the other three
languages, omitting the BERT model from Section 6.6.2. This also means that we can only measure

15https://readcoop.eu

39 of 54

https://readcoop.eu

D2.7: Article separation (final) CULT-COOP-09-2017

the quality of the results heuristically based on the visual outputs. Overall, most of the existing models
seem to generalize well to the new languages and layouts from the new data sets. However, the AS
model was not always able to cluster all text blocks to the corresponding article. Some example results
can be seen in Figure 16.

We also observed in some cases that prior binarization of the input images gave better results of the
visual models than applying them directly to the corresponding grayscale images (cf. Figure 14). We
assume that this may be due to some binarized images occurring in the GT data the visual models were
trained on.

Figure 14: Comparison of the baseline detection model applied to the original image (left column) and
to a binarized version of it (right column).

40 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

(a) New York Herald (b) Åbo Underrättelser

(c) Hufvudstadsbladet (d) Västra Finland

Figure 15: Example pages for the four newspapers covered in the NewsEye prolongation.

41 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Figure 16: Example outputs for the separator detection, heading detection and text block detection mod-
els (left column) and the subsequent AS output of the GNN (right column).

42 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

9.2 Comparative article separation measure

In further developing the quality assessment approach described in Section 7.5, we implemented a
measure, which compares an AS to its GT by counting correctly marked articles along with positions
where an article was erroneously split or where two articles where erroneously merged.

Mathematically, the collection of text blocks into articles can be seen as a (combinatorial) partition over
the set of all text blocks of a page, where every article then consists of the text blocks contained in one
subset, called blocks of the partition. Both the GT and the hypothesis correspond to one partition each,
and on this background, the AS quality can be measured by the distance between those two partitions
in the so-called partition lattice, i.e. the ordered set of all partitions.

Altogether, we describe the quality of an AS on a per-page level by the following four figures compared to
the GT separation: numbers of corrects, wrong splits, wrong merges, and distance (in partition lattice).
In order to further compare such quadruples, it appeared to be reasonable to order them by distance
first and then by the number of corrects second. This ordering can finally be used to compare the quality
of different ASs against the given GT for a page. For two ASs, the AS with the higher ranked quadruple
(according to the aforementioned ordering) receives one point, where the points are added up over all
pages in the data set. In this case, the highest possible score is determined by the number of pages ♣D♣
in the data set D (one AS scored higher on every single page than the other one). For more than two
ASs (e.g. k), the comparisons are made for each possible pairing and all respective scores for each AS
are added together. In this case, the highest possible score would be (k − 1)♣D♣ (one AS scored higher
on every single page than all the k − 1 remaining ones). Note that because we count draws, i.e. same
distances and same number of corrects, as scores for both contenders, that the sum of the scores can
surpass the number of pages in a particular data set.

Given this new user-inspired measure, it was natural to repeat the evaluation of the clustering algorithms
of year three. Their original results with respect to the initial AS measure can be found in Table 6
page 37. Any chosen hyperparameters were kept the same. Since the new measure is based on a per-
page comparison of the news items for all involved algorithms, we conducted a series of comparisons,
where in each step the algorithm with the worst score is removed. In this way, you get a more direct
comparison of the best performing algorithms, whose scores are not influenced by worse results. In
this case, only two steps are needed for each data set, since we only compare three different clustering
algorithms (so only one needs to be removed until the top two get compared). Note that the scores are
computed for the entire data set and not only the test set. The results are depicted in Table 9.

Comparing the results to Table 6 (columns ’all’), we observe a similar behavior for ONB_230 and NLF_200

in both measures. In fact, the order of the algorithms is identical, with the best being DBSCAN for
ONB_230 and Hierarchical for NLF_200. To get a more general comparison, we can sum up the scores
of the algorithms across all three data sets: Greedy (1244) and DBSCAN (1228) are relatively equal,
whereas the hierarchical clustering (1439) performs best. This suggests that the latter approach seems
to be the most reliable choice for generally unknown use cases, that do not really fit any of the three GT
data sets.

9.3 ULR text block similarity feature

In collaboration with ULR, UROS incorporated more semantic context in the GNNs, besides the BERT
features. Similar to our approach in Section 6.6.1, the idea was to generate text block similarity scores

43 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Table 9: News item clustering performance (comparative measure) on all three GT data sets for the
original three clustering algorithms. The columns in each data set show a progression (left to
right), where the worst algorithm is removed from the comparison. Draws count as a score for
all involved algorithms.

Algorithm
ONB_230 NLF_200 BnF_183

All Top-2 All Top-2 All Top-2

Greedy 250 - 159 - 222 96

DBSCAN 291 143 192 71 132 -
Hierarchical 291 136 330 159 205 89

based on a combination of word embeddings of the underlying text blocks. ULR provided us such
similarity scores for each pair of text blocks in each page of the three NewsEye GT data sets (ONB_230,
NLF_200, BNF_183).

The given texts were initially stripped of special characters and punctuation symbols. Additionally, after
tokenization (using the freely available NLTK tokenizer16), any (language-specific) stop-words were re-
moved. Afterwards, for the three languages (German, Finnish, French), pre-trained FastText17 models
were used to convert word tokens into word vectors. Now, text blocks could be assigned the average of
their word vectors and similarity scores could be computed using the cosine distance between two text
block vectors. Finally, these scores were normalized by a simple linear mapping x 7→ (x + 1)/2 from
[−1, 1] to [0, 1], so that they could be interpreted as probability scores representing the likelihood of two
text blocks belonging to the same article.

The ULR similarity scores can be incorporated as additional edge features, in order to train new GNN
models for each data set. These can then be compared to matching models that do not use the new
features. The general model setup corresponds to the models of Section 7.3. For each data set we
trained two new models, one with and one without the ULR scores. Since the models without the new
features are identical to the specialized models of Table 5, we chose the best performing one for the
comparative results depicted in Table 10.

For ONB_230 and NLF_200 we did not observe any significant changes in the final F1 scores, when using
the ULR similarity scores. This result is in line with the behavior of models using our own word-vector
based similarity scores, as already described in Section 6.6.1. For BNF_183 a slight improvement on the
test set should be noted, although this is offset by a more significant performance loss on the validation
set. Overall, simple word-vector based similarity features seem to not consistently benefit the GNNs.

9.4 Rule-based post-processing of confidence graph

In an attempt to manually improve the results of the GNN prior to the final text block clustering, we
experimented with some geometrically rule-based post-processing of the resulting confidence graph.
In particular, we wanted to correct false positives, i.e. positively predicted text block relations from the
GNN, that should not belong together in practice. This in turn should alleviate some of the wrongful
merges that could be observed in the subsequent text block clustering.

16https://www.nltk.org/api/nltk.tokenize.html?highlight=word_tokenize#nltk.tokenize.word_tokenize
17https://fasttext.cc/docs/en/crawl-vectors.html

44 of 54

https://www.nltk.org/api/nltk.tokenize.html?highlight=word_tokenize#nltk.tokenize.word_tokenize
https://fasttext.cc/docs/en/crawl-vectors.html

D2.7: Article separation (final) CULT-COOP-09-2017

Table 10: Evaluation of GNNs trained with and without the ULR similarity scores. Results are chosen
based on best F1 score (at threshold T , in %).

Data set Setup
Train Val Test

T P R F1 T P R F1 T P R F1

ONB_230
- 0.79 97.5 97.9 97.7 0.88 84.3 88.1 86.1 0.79 87.7 86.2 87.0

+ULR 0.74 97.5 97.9 97.7 0.90 84.9 87.7 86.2 0.76 87.5 86.5 87.0

NLF_200
- 0.94 88.7 89.6 89.1 0.88 82.0 89.3 85.5 0.90 89.6 84.2 86.8

+ULR 0.92 89.1 88.6 88.9 0.83 81.5 89.6 85.4 0.87 88.5 84.9 86.7

BNF_183
- 0.68 77.5 82.5 79.9 0.91 59.9 73.6 66.0 0.84 66.1 65.5 65.8

+ULR 0.76 80.9 82.4 81.7 0.92 59.3 66.8 62.8 0.87 68.4 65.0 66.6

After discussions with project partners at UIBK-DEA, we made two basic assumptions regarding the
formation of articles:

(1) Structurally, an article should usually start with a heading, followed by a text body. The next
heading should then signal the end of the current article as well as the beginning of the next one.

(2) Visible horizontal separators should be an indicator for article borders.

Both, headings and horizontal separators are extracted by previous modules in the AS workflow and
can therefore be used to implement rules that try to correct text block relations which do not fulfill the
aforementioned assumptions. In this case, the corresponding edge in the graph would be masked, i.e.
its confidence set to zero. Especially assumption (2) was of interest, since one of the conclusions of the
previous internal user satisfaction survey (see Section 7.5) was that much more weight should be given
to horizontal separators.

The rule set consists of the following rules, but only covers some of the possible cases in (1) and (2),
since the proper reading order over the text blocks is not available (this would be necessary to make
decisions for text block pairs in different columns on the newspaper page):

• We only consider relations with a confidence above a certain threshold (e.g. p > 0.3).
The reason is that, because we want to correct false positives, we are not interested in relations
that were assigned a low confidence by the GNN, since those are not likely to be clustered together
later on.

• Given a pair of text blocks, for which exactly one of them is marked as a heading, we mask their
edge in the confidence graph, if they are both horizontally aligned on the page (i.e. located in
the same column, based on their bounding boxes) and the heading is located vertically below the
other text block.
This solves some of the cases in (1): It is not possible to make a reasonable decision for a pair
of two headings. Furthermore, if the text blocks are not horizontally aligned, it is still possible that
they are part of the same article which spans multiple columns.

• Given any pair of text blocks (A, B) and a set of horizontal separators S, we first look for separators
S ∈ S that vertically separate A and B, i.e. we either have an alignment of the form ‘A over S

over B’ or ‘B over S over A’. We then mask the corresponding edge, if the triple (A, B, S) is also
horizontally aligned, in the sense that there needs to be at least a minimal horizontal overlap of
both A and B with S respectively.
This solves some of the cases in (2): Technically two text blocks can be separated by a horizontal

45 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

separator even if they are neither vertically nor horizontally aligned (e.g. when they are located in
different columns), but this is impossible to check geometrically without the proper reading order.

These rules are pretty restrictive, since they can only ever mask pairs of text blocks which are horizon-
tally aligned. But even then, experiments showed, that when incorporating this kind of post-processing
to the confidence graph, the final text block clustering results actually decrease in quality. This behavior
was consistent across all three NewsEye GT data sets and is due to the fact that the rules also mask
true positive text block pairings in practice. The errors are mainly due to many different structural in-
consistencies in the GT and underlying data, regarding the two assumptions mentioned above. These
include, but are not limited to:

• visible lines beneath headings or underlining of text, that are interpreted as horizontal separators
• multiple sub-headings within a single article
• smaller horizontal lines or ornaments within articles which are interpreted as horizontal separators
• big headers on front newspaper pages, that consist of multiple headings and lines
• tables which consist of many horizontal separators and text blocks
• interweaved advertisements in articles, that function as separators

Some examples of the masking process (with selective errors) are shown in Figure 17. Although these
errors occur more rarely than correctly masked edges, they have a big negative impact on the final
clustering, which outweighs any performance gain from the post-processing.

9.5 Hierarchical text block clustering

Given the overall good results of the hierarchical text block clustering across different data sets, as
supported by the results of Table 6 and Table 9, we wanted to expand on this approach.

As described in Section 6.8, the algorithm is an agglomerative clustering method, i.e. a bottom-up
approach. It begins with a forest of clusters that have yet to be used in the hierarchy being formed. It
then iteratively combines the two closest clusters, until one big cluster remains in the forest. To this
end, a cluster distance metric needs to be defined. Afterwards, the hierarchy needs to be processed in
some way, to extract the actual clusters. In our original approach, we chose the distance of centroids as
the cluster distance metric and applied a distance threshold on the formed hierarchy to extract the final
clusters.

9.5.1 Cluster distance metric

The algorithm maintains a distance matrix for each cluster in the forest, which gets updated at each
step. Let d(·, ·) be the cluster distance metric and s and t the two closest clusters that form a new
cluster u. In the algorithm, s and t will therefore be removed from the forest, u will get added and the
distance matrix will get updated. In the following, suppose there are ♣u♣ original nodes u1, . . . , u♣u♣ in
cluster u and ♣v♣ original nodes v1, . . . , v♣v♣ in cluster v, where v ̸= u is any remaining cluster in the forest.
Also, let D be the original pairwise distance matrix.

Besides the distance of centroids (UPGMC algorithm - unweighted pair group method centroid)

d(u, v) = ♣♣cu − cv♣♣2,

46 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

(a) (b) (c)

Figure 17: Post-processing of confidence graph for three different example pages. Masked edges and
their confidence are shown in (a), whereas (b) categorizes them into corrects (green) and
errors (red) regarding the GT articles. The resulting confidence graph is depicted in (c). The
errors here are due to horizontal lines under headings (middle) and multiple sub-headings in
a single article (bottom).

where cu and cv are the centroids of clusters u and v, and cu is computed as the Euclidean centroid
over all original nodes in clusters s and t, there are many other options for the choice of d(·, ·). We list
some of them in the following:

47 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

• Method Single (Nearest Point Algorithm)

d(u, v) = min
i∈[♣u♣],j∈[♣v♣]

Dui,vj
.

• Method Complete (Farthest Point Algorithm)

d(u, v) = max
i∈[♣u♣],j∈[♣v♣]

Dui,vj
.

• Method Average (UPGMA Algorithm - unweighted pair group method average)

d(u, v) = d(s ∪ t, v) =
♣s♣ · d(s, v) + ♣t♣ · d(t, v)

♣s♣+ ♣t♣
.

• Method Weighted (WPGMA Algorithm - weighted pair group method average)

d(u, v) = d(s ∪ t, v) =
d(s, v) + d(t, v)

2
.

The choice of the method will influence the shape of the final hierarchy and its individual cluster dis-
tances. One can also observe some inherent properties of the resulting hierarchy, given the cluster
distance metric.

Using the method Single, clusters may be forced together due to single elements being close to each
other, even though many of the elements in each cluster may be very distant to each other. In the context
of the AS task, this would be a problem, since we have to assume some false positive in the confidence
graph. The method Complete tends to find compact clusters of approximately equal diameters, but
splits large clusters. Method Centroid has the possibility of inversions, i.e. two clusters that are merged
may be more similar than the pair of clusters that were merged in a previous step. For other methods,
the distance between merged clusters monotonically increases. Also, technically, it requires Euclidean
distances between the original objects to be correctly defined. This is not guaranteed for the GNN
confidences. Methods Average and Weighted both do simple averaging with different weightings. In
theory Average should be preferred, because all distances contribute equally to each average and there
is no practical reason to believe that individual nodes should have different weights.

Another idea to evaluate the different cluster distance metrics, is to compute the Cophenetic Correla-

tion Coefficient. It measures how faithfully a hierarchy preserves the pairwise distances between the
original objects and it can be argued that a hierarchy is an appropriate summary of the data if the cor-
relation between the original distances and the cophenetic distances is high. We let D ∈ (0,∞)n×n be
the original pairwise distance matrix, d its mean, T ∈ (0,∞)n×n the pairwise cophenetic distance matrix
(distance between two objects in the hierarchy) and t its mean. The Cophenetic correlation coefficient
c ∈ [−1, 1] is defined as

c =

∑

i<j(Di,j − d)(Ti,j − t)
√

∑

i<j(Di,j − d)2
∑

i<j(Ti,j − t)2
.

In practice we found, that the method Average produced the highest cophenetic correlation coefficients,
if only slightly ahead of Centroid. The other methods performed worse overall. Therefore, we will be
using the Average cluster distance metric going forward.

9.5.2 Cluster extraction

Once the hierarchy is formed, the actual clusters need to be extracted. As already mentioned, one way
is to compute a distance threshold at which the hierarchy is cut. Any clusters that were merged with a

48 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

distance metric below the threshold are kept and clusters formed above the threshold are split. Another
option is to evaluate multiple possible clusterings using different cluster validity indices or methods with
the goal to determine the optimal number of clusters. Given a hierarchy over n objects, there are n

possible clusterings, from a single cluster containing all objects to n clusters with a single object each.
For each of these clusterings the chosen cluster validity index is computed, in order to choose the
optimal number of clusters (according to that index). There is wide range of such cluster validity indices
available. Here, we want to focus on two methods.

The first method uses the Silhouette Coefficient as a measure of cluster validity. Let n objects be
clustered into k clusters C1, . . . , Ck. For a single object u ∈ Ci we define

a(u) =
1

♣Ci♣ − 1

∑

v∈Ci,v ̸=u

Du,v as the distance of u to its own cluster and

b(u) = min
j ̸=i

1

♣Cj ♣

∑

v∈Cj

Du,v as the distance of u to its nearest cluster.

The Silhouette Score s(u) ∈ [−1, 1] of u is then computed as

s(u) =

{

0, if ♣Ci♣ = 1
b(u)−a(u)

max¶a(u),b(u)♢ , if ♣Ci♣ > 1
.

Note that a(u) is not clearly defined for clusters with size 1, in which case we set s(u) = 0. For a high
Silhouette Score we require a(u) ≪ b(u). Since a(u) is a measure of how dissimilar u is to its own
cluster, a small value represents a good cluster match. Furthermore, a large value of b(u) implies that
u is badly matched to its neighboring cluster. Thus, a Silhouette Score close to 1 means that the data is
appropriately clustered and a value near 0 means that u is on the border of two clusters. A value close
to −1 indicates that the clustering can be improved if u would be matched to its neighboring cluster.
Finally, the Silhouette Coefficient s ∈ [−1, 1] is the mean Silhouette Score over all objects

s =
1

n

k
∑

i=1

∑

u∈Ci

s(u).

For this method, the optimal number of clusters is the one that maximizes s.

The second method extracts the cluster distances that were used to merge clusters during the hierar-
chical clustering algorithm and associates them with the corresponding number of clusters. This data
is then plotted and the method looks for an ‘elbow’ in the graph, i.e. for a change of slope from steep
to shallow, to determine the optimal number of clusters. The merge distances at the start of the clus-
tering algorithm, when each object still forms its own cluster, will be fairly small. In comparison, merge
distances at the end of the clustering algorithm, when only a couple of clusters are left, will be fairly
large. The idea of this Elbow method is, that the bend of the graph indicates, that additional clusters
beyond that point have little value for a more meaningful cluster separation, since all objects are already
relatively close to their clusters.

Figure 18 shows a newspaper example, its corresponding hierarchy and visualization of how both meth-
ods determine the optimal number of clusters.

49 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Figure 18: Visualization of the new hierarchical clustering methods. Top left: newspaper sample with
overlayed confidence graph. Top right: Hierarchy formed by the clustering algorithm. Bottom:
Graphs for cluster validity methods (left: Silhouette, right: Elbow), including the resulting
optimal number of clusters (dotted lines).

9.5.3 Evaluation

We setup two alternative hierarchical clustering algorithms using the Average cluster distance metric
and the two aforementioned cluster extraction methods. We compare them against the three candidates
of Section 6.8 using the new comparative measure. The results for all GT data sets are depicted in
Table 11.

The Elbow method is on par with the previous approach on the ONB_230 data set. For NLF_200 we can
see that the threshold method still outperforms the new methods. On BnF_183, where we had the worst
overall AS and GNN results (compared to the other two data sets), we see a clear improvement over
any of the previous algorithms. This indicates that these cluster validity measures are more robust to

50 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

noise in the confidence graph and could be good candidates for future unseen data sets, where no
additional GT is available.

Table 11: News item clustering performance (comparative measure) on all three GT data sets for dif-
ferent clustering algorithms. The columns under Evaluation show a progression (left to right),
where the worst algorithm is continuously removed from the comparisons. Draws count as a
score for all involved algorithms.

Data set Algorithm
Evaluation

All Top-4 Top-3 Top-2

ONB_230

Greedy 544 406 - -
DBSCAN 562 423 275 -
Hierarchical (threshold) 621 461 306 170

Hierarchical (silhouette) 530 - - -
Hierarchical (elbow) 611 458 301 158

NLF_200

Greedy 307 - - -
DBSCAN 354 233 - -
Hierarchical (threshold) 626 455 296 135

Hierarchical (silhouette) 505 358 218 88

Hierarchical (elbow) 512 343 194 -

BnF_183

Greedy 260 134 - -
DBSCAN 155 - - -
Hierarchical (threshold) 263 147 58 -
Hierarchical (silhouette) 617 441 273 114

Hierarchical (elbow) 605 430 262 108

9.6 Internal user satisfaction survey

We continued collecting user feedback for the AS results on the three NewsEye use-case data sets (cf.
Section 4.2) for the project languages German, French and Finnish. Moreover, the designated subset
of Swedish language newspapers was added for processing during NewsEye’s prolongation phase.
Hence, altogether four data sets have been entirely processed by UROS’ AS workflow (cf. Section 5).
For every language, 100 pages were chosen randomly, all of which were pure test data and have never
been used for training of any of the machine learning components.

We conducted the survey by asking the project partners at the National Libraries in Vienna, Paris and
Helsinki, respectively

(a) to provide a star-like ranking (0-5 stars) for the overall impression of the AS quality per page
(b) to count, per page, correctly separated articles and faults in incorrectly split or merged articles or

wrong article beginnings (cf. Section 7.5)

We are very grateful to have received almost complete feedback for (a) and partial feedback for (b),
where this approach apparently generated a too extensive workload for figuring out all details. An
overview of user feedback (a) is given in Table 12. We only received feedback for 41 pages on the
French data set and the 3 missing pages on the German data set are due to users classifying them as
irrelevant to the task at hand. These answers allow for a first qualitative estimate, and show that the
final AS results are considered to be of rather weak to medium quality.

51 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

Table 12: User Satisfaction Survey: Feedback on ranking with 0 – 5 stars.

DE FR FI SV

0 3 1 10 32
1 8 6 45 39
2 31 25 33 15
3 31 9 10 6
4 21 - 2 7
5 3 - - 1

total 97 41 100 100
average 2.70 2.02 1.49 1.20

However, from our overall point of view, this overview also stands as a proof of the concept: It shows
that NewsEye’s AS workflow works in principle – but also reveals that very different efforts have been
implemented for the four data sets. While for the German texts, we were able to tune very specific
training data, the respective quality was essentially different for French and Finnish data sets and has
not been tuned in any manner. Finally, for the recently added Swedish data set, we only exploited
structural features and did not even apply a BERT-type language model based semantic feature.

Therefore, we may directly conclude that much more preparatory work and training effort for machine
learning based algorithms has to be done for adjusting the engines and components to the specific data
and the particular requirements of specific applications.

However, in spite of earlier hopes, the overall feedback did not allow to draw resilient quantitative con-
clusions on what amount and/or type of separation failures may affect the users’ impression on the
separation quality or the usability of the separated page. Our conjecture is that this is mostly due to the
very different expectations and view points that different users may have. Consequently, for process-
ing data sets and consistently estimating the resulting AS quality, one should agree upon and provide
evaluation guidelines prior to the survey.

As an immediate consequence, the project partner UIBK-DEA (WP1 leader) proposed to run a very
specific follow-up project on very homogeneous data and extremely clean GT. This will allow to precisely
measure the resulting quality and to better estimate the true capabilities of the established workflow.

9.7 Future work

At the time of writing this report, project data sets with AS results are used and the AS workflow is
investigated for usage by three NewsEye partners: UIBK-DEA (READcoop / Transkribus, Austria), ONB
(Austrian National Library), and UH-DH (Helsinki Computational History Group, University of Helsinki,
Finland). All teams will further be supported by UROS’ software developers.

UROS, as the leading technology partner for AS, continues to process the quality assessment data set
(see Section 9.6). In the context of exploitation and sustainability, it will further evaluate those results
together with READcoop’s Transkribus team and partner UIBK-DEA, and propagate the findings to
interested NewsEye partners.

For this, following advice from UIBK-DEA, the evaluation measure for comparing automatically-generated
article separations against a ground truth (see Section 9.2) is modified: It now also counts based on

52 of 54

D2.7: Article separation (final) CULT-COOP-09-2017

baselines directly (rather than on the intermediate text blocks, as done earlier), which allows to take all
possible failures into account.

Finally, as part of the implementation of the sustainability plan and as already mentioned at the begin-
ning of Section 9, we plan a more intensive exchange with the Transkribus team to further advance the
integration of the AS workflow into Transkribus.

References

[1] Tobias Grüning, Roger Labahn, Markus Diem, Florian Kleber, and Stefan Fiel. “READ-BAD: A
New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents”. In: CoRR
abs/1705.03311 (2017). arXiv: 1705.03311. URL: http://arxiv.org/abs/1705.03311.

[2] Andrew Naoum. “Article Segmentation in Digitised Newspapers”. PhD thesis. University of Syd-
ney, 2020. URL: https://hdl.handle.net/2123/21725.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Tech-
nologies 1 (2019), pp. 4171–4186.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”. In: Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI
Press, 1996, pp. 226–231.

[6] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. “On the shape of a set of points
in the plane”. In: IEEE Trans. Information Theory. 1981.

[7] Tobias Grüning, Gundram Leifert, Tobias Strauß, and Roger Labahn. “A Two-Stage Method for
Text Line Detection in Historical Documents”. In: CoRR abs/1802.03345 (2018). arXiv: 1802 .

03345. URL: http://arxiv.org/abs/1802.03345.

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation”. In: Proc. of the Medical Image Computing and Computer-Assisted
Intervention (MICCAI). 2015, pp. 234–241. DOI: 10.1007/978-3-319-24574-4_28.

[9] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proc. of the Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2015, pp. 3431–3440. DOI: 10.1109/CVPR.2015.7298965.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. “Mask R-CNN”. In: CoRR
abs/1703.06870 (2017). arXiv: 1703.06870. URL: http://arxiv.org/abs/1703.06870.

[11] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation”. In: CoRR abs/1311.2524 (2013). arXiv:
1311.2524. URL: http://arxiv.org/abs/1311.2524.

[12] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015). arXiv: 1504 . 08083. URL:
http://arxiv.org/abs/1504.08083.

53 of 54

https://arxiv.org/abs/1705.03311
http://arxiv.org/abs/1705.03311
https://hdl.handle.net/2123/21725
https://arxiv.org/abs/1802.03345
https://arxiv.org/abs/1802.03345
http://arxiv.org/abs/1802.03345
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2015.7298965
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083

D2.7: Article separation (final) CULT-COOP-09-2017

[13] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506.

01497. URL: http://arxiv.org/abs/1506.01497.

[14] David Hébert, Thomas Palfray, Stéphane Nicolas, Pierrick Tranouez, and Thierry Paquet. “Auto-
matic article extraction in old newspapers digitized collections”. In: ACM International Conference
Proceeding Series (May 2014). DOI: 10.1145/2595188.2595195.

[15] Andrea Britto Mattos, Igor Dos, Santos Montagner, Alexandre Crivellaro, Bruno Klava, and Marcel
Brun. “Computer vision research at IBOPE Media: automation tools to reduce human interven-
tion”. In: (Jan. 2011).

[16] B. Gatos, S. L. Mantzaris, K. V. Chandrinos, A. Tsigris, and S. J. Perantonis. “Integrated algo-
rithms for newspaper page decomposition and article tracking”. In: Proceedings of the Fifth In-
ternational Conference on Document Analysis and Recognition. ICDAR ’99 (Cat. No.PR00318).
1999, pp. 559–562. DOI: 10.1109/ICDAR.1999.791849.

[17] Anukriti Bansal, Santanu Chaudhury, Sumantra Dutta Roy, and J.B. Srivastava. “Newspaper Arti-
cle Extraction Using Hierarchical Fixed Point Model”. In: 2014 11th IAPR International Workshop
on Document Analysis Systems. Apr. 2014, pp. 257–261. DOI: 10.1109/DAS.2014.42.

[18] B. Epshtein, E. Ofek, and Y. Wexler. “Detecting text in natural scenes with stroke width transform”.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010,
pp. 2963–2970. DOI: 10.1109/CVPR.2010.5540041.

[19] Emily M. Bender and Alexander Koller. “Climbing towards NLU: On Meaning, Form, and Un-
derstanding in the Age of Data”. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Online: Association for Computational Linguistics, July 2020,
pp. 5185–5198. DOI: 10.18653/v1/2020.acl- main.463. URL: https://www.aclweb.org/

anthology/2020.acl-main.463.

[20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. “A
Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions on Neural Networks
and Learning Systems 32.1 (2021), pp. 4–24. DOI: 10.1109/TNNLS.2020.2978386.

[21] B Delaunay. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Es-
testvennyka Nauk 7.793-800 (1934), pp. 1–2.

[22] Günter Mühlberger. Private communication.

[23] Johannes Michael, Max Weidemann, Bastian Laasch, and Roger Labahn. “ICPR 2020 Compe-
tition on Text Block Segmentation on a NewsEye Dataset”. In: Feb. 2021, pp. 405–418. ISBN:
978-3-030-68792-2. DOI: 10.1007/978-3-030-68793-9_30.

54 of 54

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1145/2595188.2595195
https://doi.org/10.1109/ICDAR.1999.791849
https://doi.org/10.1109/DAS.2014.42
https://doi.org/10.1109/CVPR.2010.5540041
https://doi.org/10.18653/v1/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1007/978-3-030-68793-9_30

	Executive Summary
	Introduction
	Proposed article separation measure
	Notation
	R and P matrices
	R-, P- and F-value for article separation

	From articles to news items
	Data
	Ground truth format
	NewsEye data sets

	Workflow
	Modules
	Baseline detection
	Automatic text recognition
	Text block detection
	Baseline clustering
	Semantic segmentation using RU-Net
	Instance segmentation using Mask R-CNN

	Separator detection
	RU-Net for separator detection
	Post-Processing
	Baseline correction

	Heading detection
	ARU-Net for heading detection
	Stroke Width Transform for heading detection
	Combination of both approaches

	Content based features for text block relations
	Word vector based text block similarities
	BERT based text block similarities

	Graph neural network
	Text block clustering

	Experiments and results
	Semantic context with BERT
	GNN training with pseudo ground truth
	GNN generalization capabilities
	News item clustering
	Internal user satisfaction

	Competition on text block segmentation
	Prolongation Update
	New data sets
	Comparative article separation measure
	ULR text block similarity feature
	Rule-based post-processing of confidence graph
	Hierarchical text block clustering
	Cluster distance metric
	Cluster extraction
	Evaluation

	Internal user satisfaction survey
	Future work

