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Executive summary

This report describes the second step of the information processing pipeline of work packages 2–5,
the automatic text recognition. Based on the results of a layout analysis algorithm, we apply models
to automatically transcribe the contents of segmented text line images. These models involve deep
artificial neural networks designed for sequence labeling tasks.

The present deliverable is the second and last version of our work on Automatic Text Recognition. The
incorporation of Language Models, as an outlook of the first deliverable, did not benefit the sequence-to-
sequence models. Nevertheless, minor adaptations to last year’s systems as well as modified training
strategies and additional training data improved the overall performance of our models.
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1 Introduction

Last year we introduced two different kinds of deep Artificial Neural Networks (NNs) designed for se-
quence labeling tasks that we apply to the task of Automated Text Recognition (ATR): Systems utiliz-
ing the Connectionist Temporal Classification (CTC) [1] objective function and Sequence-to-Sequence
(Seq2Seq) [2] models. Both rely on an efficient usage of Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). The proposed architectures built a solid baseline and reached
satisfactory performance on a newspaper collection from the Austrian National Library (ONB)1.

In the second year we tried to improve upon this foundation. Although no major changes to the under-
lying models were done, minor hyperparameter adaptations, as well as modified training strategies and
additional training data have brought further improvements. Our ATR systems reach new peak accu-
racies in terms of Character Error Rate (CER). Overall, we observe a relative improvement of about
15 − 23 % over the initial benchmarks of year one, despite the fact that the initial error rates were al-
ready down to 1-2 absolute percent points. The evaluation was done on an updated version of the ONB
dataset, in which several ground-truth errors were corrected.

Our CTC models still slightly outperform our Seq2Seq models. Experiments on combining the lat-
ter with Language Models (LMs) were not able to bridge the minor performance gap. Nevertheless,
they still reached competitive performance compared to the state-of-the-art on two popular handwritten
datasets and significantly improved over any recent Seq2Seq approaches. The corresponding work was
published as a paper [2] at the 15th International Conference on Document Analysis and Recognition
(ICDAR 2019) and is appended at the end of this deliverable.

This deliverable is structured as follows: After a reminder of the original description of Task 2.2 to con-
lude this introduction, Section 2 explains the adaptations to the ATR systems and training procedures.
Afterwards, Section 3 introduces the different concepts of combining a Seq2Seq model with a LM. Sec-
tion 4 presents the updated newspaper collection from the ONB and evaluates the models. Finally,
Section 5 concludes this deliverable.

Task 2.2 – Automatic Text Recognition (ATR)

The following is copied from the grant agreement:
In this task we will develop methods and tools to read text line images for finally providing their textual
information. This will start by adapting and incorporating existing tools, thus further enabling the entire
NewsEye workflow to be run from an early project phase already. For the result of the text recognition,
however, two approaches are to be followed: (a) String transcription approach directly delivers strings,
and in order to achieve a highly reliable text quality, we will incorporate semantic context by means
of (Neural) Language Models. The required essential contribution to the application domain will be
delivered by the consortium partners ULR and UH-CS. (b) Statistical decoding approach will investigate
and apply advanced decoding schemes of the posterior (character) probabilities output generated by
the Neural Networks based ATR. Exploiting its convincing search capabilities for simple keywords and
regular expressions, we will investigate the new approach of Topic Modeling based on statistical ATR
output. This will mainly start as a research topic in synergy with WP4, developed in joint work with
UH-CS and ULR.

1Österreichische Nationalbibliothek

4 of 13



D2.5: Automatic Text Recognition (final) CULT-COOP-09-2017

2 ATR improvements

2.1 Model overview

We want to reintroduce our two different models. This section is mostly based on D2.2 (Section 2),
where a more detailed description is available. Both models tackle the general sequence labeling task
of taking sequences of fixed-size, real-valued vectors as input and outputting sequences of discrete
labels. In this case the inputs are grayscale text line images and the targets are the corresponding
character sequences present in the image. They do this in a supervised setting, where input-target
pairs are presented and the goal is to minimize some task-specific error measure.

CTC-based models compute a probability distribution over all possible output sequences, given an
input sequence. They do so by dividing the input sequence into frames and emitting, for each frame,
the likelihood of each character of the target alphabet expanded by an artificial blank character. The
probability distribution can be used to infer the actual output greedily, either by taking the most likely
character at each time step or using beam search. Our ATR-CTC model combines a CNN as a generic
feature extractor with an RNN to encode the visual information as well as the temporal context between
characters in the input image. The CNN converts segmented text line images of variable length and
fixed height into a sequence of visual feature vectors. The RNN reads the sequence of convolutional
features and tries to encode temporal context between them. The model is fully differentiable and can
be trained end-to-end in a supervised manner via the backpropagation algorithm. A general overview
of the model is shown in Figure 1.
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Figure 1: The ATR-CTC model – A stacked Conv-BLSTM architecture with interweaved pooling layers.
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Seq2Seq models that follow the encoder-decoder framework decouple the decoding from the feature
extraction. First, an encoder reads and builds a feature representation of the input sequence, then a
decoder emits the output sequence one token at a time. Our ATR-Seq2Seq model consists of a deep
CNN-RNN-encoder and an RNN-decoder. The former matches the general architecture of previously
presented ATR-CTC model. The latter employs an attention mechanism to gather context information
and search for relevant parts of the encoded features. The model is fully differentiable and can be
trained end-to-end in a supervised manner via the backpropagation algorithm. A more detailed look at
the Seq2Seq model can be found in [2] and a general overview of the model is shown in Figure 2.
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Figure 2: The ATR-Seq2Seq model – The encoder (which matches the ATR-CTC architecture) con-
verts an input image I into a sequence of fixed-shaped feature vectorsH = (h1, . . . , hM ). The
decoder emits the output sequence Y = (y1, . . . , yT ) one character at a time. At each time
step t, it employs an attention mechanism Att to generate a context vector ct based on the
encoded feature vectors and the time-dependant decoder hidden state st. This context vector
is used to produce the decoders output yt for the current time step via a fully-connected layer
(FC). A concatenation of the context vector and the embedded output serves as the decoders
next input.

2.2 Architectural adaptations

Only minor changes to the underlying models were done. We simplified some of the convolutional
blocks, by excluding utility layers like batch normalization and local response normalization. They did
not seem to affect the final performance of the evaluations and by removing them we could speed up
the training and inference times.

More important was the replacement of the final model parameters (the actual weights that were trained)
with an exponentially weighted moving average over their values across the training cycle. The problem
is that during training, the gradients and thus the weight adaptaptions are often noisy. Therefore it can
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be beneficial to smooth out the final parameters, by using averaged weights for inference. The moving
averages are computed using exponential decay, i.e.

vt = δvt−1 + (1− δ) ∗ wt, (1)

where wt are the models weights at training step t, vt is the corresponding moving average and δ is the
decay factor, which is usually close to 1.0.

2.3 Modified training strategies

Both of our ATR models are entirely differentiable and can be trained end-to-end in a supervised manner
via the backpropagation algorithm. We implement them using TensorFlow, Google’s C++ based open-
source software library for numerical computations, mainly used for machine learning applications. This
allows us to experiment with a wide variety of optimization algorithms, like ADAM or RMSPROP. One
of the most important hyperparameters that ensures a robust and stable training is the learning rate,
controlling how much the network parameters are adjusted during training. It is independent of the
chosen optimizer and amongst other things, it is responsible for a smooth convergence of the training
and can improve the final model performance. If the learning rate is too small, the training will take
too long, since the network adapts very slowly. If the learning rate is too big, the network may fail to
converge or even diverge. We experimented with different learning rate schemes, to improve upon a
basic constant learning rate. A simple exponential decay of the learning rate over the course of the
training helps the network to adapt quickly in the early stages of training and to finetune its parameters
in the later stages of training. Another experimental approach was to lock the learning rate to a constant
value in the beginning and to apply a cosine-like decay at the end. Overall the network converges faster
with the exponential decay, but reaches better final performance with the latter approach, which is why
we chose that setup in combination with the ADAM optimization algorithm as the new standard for ATR
training.

We also experimented with the concept of reinitialization strategies. The core idea is to fully retrain
an already pretrained model after reinitializing one or more specific layers of the network. Especially
deeper layers should in theory benefit from a fresh training when they get more meaningful features
from the layers below them early on. The standard case comprises a full training run, after which a
layer gets randomly reinitialized, the learning rate gets reset and a second full training run is executed.
Theoretically there are no constrains on how many layers can be reinitialized in this manner or how often
one can repeat the training process. We did not find any literature that explored a similar technique,
but even with just one reinitialization loop, we observed a performance boost of up to 10 %, depending
on the use case, when applied on the output or last Bidirectional Long Short-Term Memory (BLSTM)
layer. Doing multiple loops can be expensive, because you have to fully retrain the model each time,
but exploiting GPU capabilities, it seems feasible when one wants to really optimize a particular model.

3 Language Model integration

The decoder part of the Seq2Seq approach can be interpreted as to implicitly model language data
conditioned on the encoder features. Its training requires paired data of text line images and their
matching transcriptions. Often times there is additional raw text data available, that can be used to build
distinct language models (LMs), which in turn may be able to improve the final prediction. A LM tries to
model a probability distribution P (w1, . . . , wn) over sequences of token (e.g., characters or words). This
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probability can be rewritten as

P (w1, . . . , wT ) = P (w1)
T∏
i=2

P (wi | w1, . . . , wi−1). (2)

A common type are n-gram LMs. They only consider a history of n − 1 tokens, assuming a Markov
property of order n− 1, i.e.

P (w1, . . . , wT ) = P (w1)
T∏
i=2

P (wi | wi−n+1, . . . , wi−1). (3)

The actual conditional probabilities are modeled by counting frequencies:

P (wi | wi−n+1, . . . , wi−1) =


c(wi−n+1,...,wi)
c(wi−n+1,...,wi−1) , if c(wi−n+1, . . . , wi−1) > 0

0 ,otherwise
(4)

where c(·) counts the frequency of a sequence given in the text. In contrast, Neural LMs are NNs that
are trained on text corpora.

If we want to combine our Seq2Seq model with the text-predictive probabilities given by a LM, one can
imagine various ways of doing so. Popular examples in the literature include Shallow Fusion [3], Deep
Fusion [3], Cold Fusion [4] and Simple Fusion [5]. These approaches differ mainly in two points: At what
point the LM is integrated into the ATR models computation and at what point it is integrated into the
ATR models training. Since we use n-gram LMs, which are not trainable in the common sense because
they just count frequencies, we can only use a late training integration, i.e. both the ATR model and
the LM need to be trained stand-alone and may only be combined afterwards during inference. And
since we are not working with a neural LM, where internal states of the different NNs can be combined,
we can only use a late computation integration. What we end up with is the Shallow Fusion approach.
We use a fixed pretrained Seq2Seq model and a fixed n-gram LM. At inference time we then apply a
log-linear interpolation of the Seq2Seq scores p(y | x) and the LM scores pLM (y)

y∗ = arg max
y

log p(y | x) + λ log pLM (y), (5)

and approximate y∗ using beam search.

4 Experiments

Experiments on newspapers demonstrate minor performance gains in terms of CER compared to year
one’s models. Further comparisons between the two different architectures suggest that the well estab-
lished CTC-based architectures should be the models of choice for the ATR task on newspaper data.
We briefly go over some changes made to the datasets for the evaluation in the following and report on
the corresponding results afterwards.

4.1 Data

We refer to Deliverable D2.2 (Section 3) for the introduction of the ONB dataset. After some thorough
reevaluation of the ground-truth data during the last year we recognized various errors. These contain
layout errors on baseline level (e.g., falsely split or merged baselines, too long or too short baselines
etc.) as well as transcription errors on line level. We tried to manually correct these errors. The main
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focus was to polish the layout information about the baselines present in the images, since an erroneous
baseline will inevitable result in an incorrect extracted text line and thus in an incorrect transcription.
Obvious transcription errors were fixed along the way as well, but we reckon that the corrected data is
still not perfect. The updated statistics are depicted in Table 1.

For the ATR scenario the data is split into three disjoint subsets for training, validation and testing. Since
the number of baselines in the updated dataset does not match the old one, new subsets were created.
The text lines were shuffled and two random selections of 10 % of the lines were split off for the validation
and test set. The number of segmented text lines for each subset is shown in Table 2.

Table 1: Updated ONB statistics – Various statistics for each of the four newspapers are shown.

# pages
# text lines avg # text lines

page

old corrected old corrected

Arbeiter Zeitung (ONB-A) 30 12993 13072 433 436

Innsbrucker Nachrichten (ONB-I) 70 16282 17031 233 243

Illustrierte Kronen Zeitung (ONB-K) 32 6726 6780 210 212

Neue Freie Presse (ONB-N) 100 50830 51903 508 519

ONB overall (ONB-All) 232 86831 88786 374 383

Table 2: Updated ONB subsets – The number of segmented text lines for the new subsets is shown.

Set
Number of segmented text lines

ONB-A ONB-I ONB-K ONB-N ONB-All

Training 10458 13625 5424 41523 71030

Validation 1307 1703 678 5190 8878

Test 1307 1703 678 5190 8878

For the upcoming LM experiments we used the so-called 3 Million German Sentences2 dataset. It
contains german language data from the Leipzig Corpus Collection [6], specifically 3 million sentences
taken from newspaper texts in 2015. Thus the language data represents modern german, but we could
not find any other text corpora closer representing the ONB data. We preprocessed the data to exclude
most of the non-latin characters. Therefore lines including mostly chinese and arabic characters, or very
rare occuring symbols were pruned from the original text.

4.2 Comparative results

In Deliverable D2.2 (Section 3) we established that training a single model on the entire dataset in-
creases the generalization and final performance compared to multiple specialized models. We there-
fore only focus on general models in this deliverable.

2available at https://www.kaggle.com/rtatman/3-million-german-sentences
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Table 3: Comparative results – The validation and test CER for both ATR models across both years are
shown on each ONB newspaper as well as the entire data set. ONB-All refers to the evaluation
on the joined validation and test sets. The depicted values represent average error rates over
three seperate training runs.

Dataset
CER: Validation / Test [%]

ATR-CTC (Y1) ATR-Seq2Seq (Y1) ATR-CTC (Y2) ATR-Seq2Seq (Y2)

ONB-A 0.78 / 0.71 1.02 / 0.68 0.67 / 0.92 0.62 / 0.88

ONB-I 1.04 / 1.02 1.14 / 1.15 1.16 / 0.99 1.16 / 1.00

ONB-K 1.24 / 1.06 1.64 / 1.34 0.82 / 0.91 0.88 / 0.90

ONB-N 1.27 / 1.13 1.37 / 1.18 0.93 / 0.88 0.93 / 0.88

ONB-All 1.14 / 1.04 1.29 / 1.11 0.93 / 0.91 0.93 / 0.91

We compare our established CTC-based architecture to the Seq2Seq model, both for year one and
year two. Since the underlying data was changed for the new models, the comparison is not perfectly
fair. Mostly layout errors were corrected in the data, e.g., falsely split or joined baselines and missing
baselines etc., which resulted in the two datasets containing a different number of baselines. Ideally
we would run the older models on the corrected data, but because we work with random data splits for
training and evaluation, it is highly likely that there would be an overlap between the training sets of the
older models and the new validation and test sets. This in turn would produce overly positive results
for the older models because of overfitting. Instead we remain with the results of the models on their
respective datasets. Evaluation is made by comparing the estimated transcription of the model with the
target character sequence. At this point we do not use a language model to improve the final prediction.
As is common in ATR, we measure the CER, i.e. the edit distance (Levenshtein distance) normalized
by the number of characters in the target. Note, that the validation CER is a representative measure,
since we train our models for a fixed number of epochs and do not perform any early stopping based on
the validation error. The results are shown in Table 3.

Both model variations trained on the entire corpus perform well across all subsets contained in the ONB
dataset. In contrast to year one, the Seq2Seq model pulls on par with the CTC model. Overall both
approaches are able to reduce the CER below 1 % on almost every subset, with the validation set of
ONB-I being the only exception. Comparing the CER of ONB-All to year one’s models shows a relative
improvement of about 15 % for the CTC model and an improvement of about 23 % for the Seq2Seq
model.

4.3 Shallow fusion

To try to further improve the Seq2Seq model, we combine it with a LM based on the previously men-
tionend 3 Million German Sentences dataset. In particular we use character based n-gram LMs with
Kneser-Ney-Smoothing [7]. These were built using the KenLM Language Model Toolkit3.

First experiments with different n-grams, beam widths and interpolation weightings showed no perfor-
mance improvements on the ONB dataset. These results can be explained by the fact that the probability

3available at https://github.com/kpu/kenlm
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distribution of the optical model is really peaky, i.e. the model is very confident in its own predictions
and thus the integration of the LM probabilities has almost no effect on the beam search output. To try
to alleviate this problem, two approaches were considered:

• Label Smoothing: For the purpose of regularization, the ground-truth label distribution is smoothed,
with some fraction of the probability mass assigned to classes other than the correct one.

• Softmax Temperature: By scaling the logits (divide them by hyperparameter T ) before applying
the softmax function, the neural network produces a softer probability distribution over the classes,
resulting in more diversity.

Experiments with a smoothing mass in the range from 0.01 to 0.06 were very unstable during training
and thus not usable. Therefore we focused mostly on the second approach.

When increasing the softmax temperature, one has to compensate for the effects of a soft output prob-
ability distribution. We observed that the increased likelihood of the < eos > token (a special token that
declares the end of the sentence) makes the model cut off its predictions too early, resulting in horren-
deous error rates. We tried to combat this by introducing a length normalization [8] in the beam search
process, to deal efficiently with the problem of comparing hypotheses of different lengths during decod-
ing. Otherwise regular beam search will favor shorter results over longer ones on average. Concretely,
the log-probabilities get normalized in the following way:

lp(y) = (5 + |y|)α

(5 + 1)α , 0 < α < 1 (6)

log(p(y | x)) → log(p(y | x))
lp(y) (7)

This regularization technique helped lengthening the predictions to better match the targets again. Un-
fortunately the CER could still not be improved compared to the baseline model. It should be noted that
the baseline model performs below 1 % CER, so there is not a lot of room for improvement anyway. The
remaining errors could be due to bad image quality or errors in the ground-truth data. Also the text data
that was used for the LM might not be able to represent the specific language found in the ONB data.
A lot of possible reasons for why the Seq2Seq model was not able to surpass the CTC model in our
particular use-case.

5 Conclusion

The Task 2.2 (Automatic Text Recognition) dealt with the problem of reading extracted text line images,
in order to provide their textual transcription. The underlying problem is a sequence labeling task, where
a system needs to find an appropriate alignment between input and output sequences of variable length.
In this case, one needs to identify the correct characters at each time step without any prior knowledge
about the alignment between the image pixels and the target characters.

We presented two different deep learning methods to solve this task. Firstly systems utilizing the CTC
objective function and secondly Seq2Seq models. We experimentally showed the applicabilty of both
models on the ATR task, specifically on a dataset of historical german newspapers. They reach very
good performance rates, if enough ground-truth data of adequate quality is available. Comparing the
baseline set in year one with the models from year two, we can observe a relative improvement of about
15 % for the CTC models and about 23 % for the Seq2Seq models. In absolute terms, the current models
reach CERs below 1 percent.
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We were also able to show that the models are able to generalize across different kinds of newspapers,
given that the language does not differ too much. This is because both models are language dependant,
in the sense that they can only transcribe text consisting of characters that they have seen in the training
data. For example, it would not be possible to apply a german model on arabic newspapers, since the
underlying character sets differ completely (latin vs non-latin).

Comparing the CTC model with the Seq2Seq model shows no clear winner in terms of CER on this
particular dataset, even when combining the latter with an n-gram LM. The former comes out ahead in
terms of training and inference time though, since it is a smaller model with less parameters.
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